Poster
Demographic Parity Constrained Minimax Optimal Regression under Linear Model
Kazuto Fukuchi · Jun Sakuma
Great Hall & Hall B1+B2 (level 1) #1727
Abstract:
We explore the minimax optimal error associated with a demographic parity-constrained regression problem within the context of a linear model. Our proposed model encompasses a broader range of discriminatory bias sources compared to the model presented by Chzhen and Schreuder. Our analysis reveals that the minimax optimal error for the demographic parity-constrained regression problem under our model is characterized by $\Theta(\frac{dM}{n})$, where $n$ denotes the sample size, $d$ represents the dimensionality, and $M$ signifies the number of demographic groups arising from sensitive attributes. Moreover, we demonstrate that the minimax error increases in conjunction with a larger bias present in the model.
Chat is not available.