Demographic Parity Constrained Minimax Optimal Regression under Linear Model

Kazuto Fukuchi
University of Tsukuba / RIKEN AIP

December 10-16, 2023 NeurIPS 2023

Fair Regression

- Let X be non-sensitive features on \mathbb{R}^d , let S be a sensitive feature on [M] where $M \geq 2$.
- With some noise ξ , let Y be outcome on \mathbb{R} , defined as

$$Y = f^*(X, S) + \xi.$$

• (Goal) Given n i.i.d. copies of (X, S, Y), construct an accurate and fair regressor f.

Fairness: demographic parity (Pedreshi et al. 2008)

$$\mathbb{P}\{f(X,S)\in E|S=s\}=\mathbb{P}\big\{f(X,S)\in E|S=s'\big\}.$$

Accuracy

• Fair Bayes-optimal regressor:

$$f_{\rm DP}^* = \arg\min_{f \in \mathcal{F}_{\rm DP}(\mu_i)} \mathbf{E}[(f(X, S) - f^*(X, S))^2]$$

• Deviation from f_{DP}^* :

$$\mathcal{E}(f;P) = \mathbf{E}[(f(X,S) - f_{\mathrm{DP}}^*(X,S))^2].$$

Minimax optimality in Fair Regression

Research question

What is the best algorithm for fair regression?

- Best algortihm = minimax optimal.
- Minimax optimal = atteining the minimum regression error under the worst-case scenario.

Models

- Chzhen et al. (2022) presents the sole study demonstrating minimax optimality in fair regression.
- Contrast with Chzhen et al. (2022): our model accounts for a broader source of discrimination.

	Outcome	Non-sensitive features
Chzhen et al. (2022) Ours		$X \sim N(0, \Sigma) X \sim N(\mu_S, \sigma_X^2 I)$

Differences from Chzhen et al. (2022) and Challenge

	partial coefficients	intercept	non-sensitive features
Chzhen et al. (2022) ours	√	√ √	√

(Challenge)

- Variability in partial coefficients leads to varied outcome variances against S. Our model poses a challenge of addressing variance disparities.
- Our model introduces bias via non-sensitive features. Mitigating this bias is an additional challenge.

Summary

- Examining the minimax optimality of regression with a constraint of demographic parity.
- Our model poses the following additional challenges compared to the existing results of Chzhen et al. (2022):
 - Mitigating outcome's variance disparity.
 - Addressing bias through non-sensitive features.
- Revealing the minimax optimal error rate as $\sigma_{\xi}^2 B^2 dM/n$.

Check out our poster and arXiv paper.