Workshop
Workshop on robustness of zero/few-shot learning in foundation models (R0-FoMo)
Ananth Balashankar · Saurabh Garg · Jindong Gu · Amrith Setlur · Yao Qin · Aditi Raghunathan · Ahmad Beirami
La Nouvelle Orleans Ballroom A+B (level 2)
Fri 15 Dec, 6:50 a.m. PST
Recent advances in the capabilities of large foundation models have been catalyzed by repurposing pretrained models to domain specific use cases through few-shot learning methods like prompt-tuning, in-context-learning; and zero-shot learning based on task descriptions. Given a few labeled examples that outline a new task [T5, GPT2, T0, DALL-E, CLIP], these large foundation models have demonstrably improved upon previous few-shot learning benchmarks [T-few, LAION]. We are closer than ever to learn from very few examples; and recent works [Frozen, Flamingo] have proposed methods to use large language and vision transformer models directly on these few examples, instead of human annotation to create large datasets for fine-tuning. The lessons learned from past-work in counterfactual reasoning, domain adaptation, meta-learning, continual learning, and adversarial training have to be revisited with a new lens towards improving robustness of few-shot learning methods or learning from no supervision (i.e., unlabeled data) that scale to multiple tasks in a safe and responsible manner. In addition to leveraging few-shot learning methods with labeled examples, there is also significant potential in harnessing the power of unlabeled data. When labeled and unlabeled data are from the same distribution, semi-supervised learning methods can be modified to now utilize large foundation models that can further improve boost performance over purely few-shot algorithms. Furthermore, similar ideas need to be explored for unsupervised domain adaptation, to improve robustness of fine-tuned methods to distribution shifts when the unlabeled data distribution is much broader than the distribution from which the labeled examples are collected.
Schedule
Fri 6:50 a.m. - 7:00 a.m.
|
Opening Remarks
(
Introduction
)
>
SlidesLive Video |
🔗 |
Fri 7:00 a.m. - 7:30 a.m.
|
Invited Talk Partha Talukdar
(
Talk
)
>
SlidesLive Video |
🔗 |
Fri 7:30 a.m. - 8:00 a.m.
|
Invited Talk Anima Anandkumar
(
Talk
)
>
SlidesLive Video |
🔗 |
Fri 8:00 a.m. - 8:30 a.m.
|
Coffee Break
|
🔗 |
Fri 8:30 a.m. - 9:00 a.m.
|
Invited Talk Alex Beutel
(
Talk
)
>
SlidesLive Video |
🔗 |
Fri 9:00 a.m. - 9:30 a.m.
|
Invited Talk Tian Li
(
Talk
)
>
SlidesLive Video |
🔗 |
Fri 9:30 a.m. - 10:00 a.m.
|
Invited Talk Srijan Kumar
(
Talk
)
>
SlidesLive Video |
🔗 |
Fri 10:00 a.m. - 11:30 a.m.
|
Lunch Break
|
🔗 |
Fri 11:30 a.m. - 12:30 p.m.
|
Poster Session
(
Poster Session
)
>
|
🔗 |
Fri 12:30 p.m. - 1:00 p.m.
|
Invited Talk Yair Carmon
(
Talk
)
>
SlidesLive Video |
🔗 |
Fri 1:00 p.m. - 1:30 p.m.
|
Coffee Break
|
🔗 |
Fri 1:30 p.m. - 2:00 p.m.
|
Invited Talk Aditya Grover
(
Talk
)
>
SlidesLive Video |
🔗 |
Fri 2:00 p.m. - 2:10 p.m.
|
Mindstorms in Natural Language-Based Societies of Mind
(
Oral
)
>
SlidesLive Video |
26 presentersMingchen Zhuge · Haozhe Liu · Francesco Faccio · Dylan R. Ashley · Róbert Csordás · Anand Gopalakrishnan · Abdullah Hamdi · Hasan Hammoud · Vincent Herrmann · Kazuki Irie · Louis Kirsch · Bing Li · Guohao Li · Shuming Liu · Jinjie Mai · Piotr Piękos · Aditya Ramesh · Imanol Schlag · Weimin Shi · Aleksandar Stanić · Wenyi Wang · Yuhui Wang · Mengmeng Xu · Deng-Ping Fan · Bernard Ghanem · Jürgen Schmidhuber |
Fri 2:10 p.m. - 2:20 p.m.
|
Foundation Models Can Robustify Themselves, For Free
(
Oral
)
>
link
SlidesLive Video |
Dyah Adila · Changho Shin · Linrong Cai · Frederic Sala 🔗 |
Fri 2:20 p.m. - 2:30 p.m.
|
Teaching language models with canonical examples
(
Oral
)
>
SlidesLive Video |
John Hewitt · Sarah Chen · Percy Liang · Christopher D Manning 🔗 |
Fri 2:30 p.m. - 2:40 p.m.
|
The Consensus Game: Language Model Generation via Equilibrium Search
(
Oral
)
>
SlidesLive Video |
Athul Jacob · Yikang Shen · Gabriele Farina · Jacob Andreas 🔗 |
Fri 2:45 p.m. - 3:25 p.m.
|
Panel Discussion
(
Panel Discussion
)
>
SlidesLive Video |
🔗 |
Fri 3:25 p.m. - 3:30 p.m.
|
Closing Remarks
(
Closing Remarks
)
>
SlidesLive Video |
🔗 |
-
|
Mindstorms in Natural Language-Based Societies of Mind
(
Poster
)
>
|
26 presentersMingchen Zhuge · Haozhe Liu · Francesco Faccio · Dylan R. Ashley · Róbert Csordás · Anand Gopalakrishnan · Abdullah Hamdi · Hasan Hammoud · Vincent Herrmann · Kazuki Irie · Louis Kirsch · Bing Li · Guohao Li · Shuming Liu · Jinjie Mai · Piotr Piękos · Aditya Ramesh · Imanol Schlag · Weimin Shi · Aleksandar Stanić · Wenyi Wang · Yuhui Wang · Mengmeng Xu · Deng-Ping Fan · Bernard Ghanem · Jürgen Schmidhuber |
-
|
Evoke: Evoking Critical Thinking Abilities in LLMs via Reviewer-Author Prompt Editing
(
Poster
)
>
|
Xinyu Hu · Pengfei Tang · Simiao Zuo · Zihan Wang · Bowen Song · Qiang Lou · Jian Jiao · Denis Charles 🔗 |
-
|
Dissecting In-Context Learning of Translations
(
Poster
)
>
|
Vikas Raunak · Arul Menezes · Hany Awadalla 🔗 |
-
|
FedJETs: Efficient Just-In-Time Personalization with Federated Mixture of Experts
(
Poster
)
>
|
Chen Dun · Mirian Hipolito Garcia · Guoqing Zheng · Ahmed Awadallah · Robert Sim · Anastasios Kyrillidis · Dimitrios Dimitriadis 🔗 |
-
|
Your CLIP Model Might Be Undertrained
(
Poster
)
>
|
Alaa Khaddaj · Hadi Salman · Andrew Ilyas · Guillaume Leclerc · Aleksander Madry 🔗 |
-
|
Tensor Trust: Interpretable Prompt Injection Attacks from an Online Game
(
Poster
)
>
|
12 presentersSam Toyer · Olivia Watkins · Ethan Mendes · Justin Svegliato · Luke Bailey · Tiffany Wang · Isaac Ong · Karim Elmaaroufi · Pieter Abbeel · Trevor Darrell · Alan Ritter · Stuart J Russell |
-
|
Provable Robust Watermarking for AI-Generated Text
(
Poster
)
>
|
Xuandong Zhao · Prabhanjan Ananth · Lei Li · Yu-Xiang Wang 🔗 |
-
|
Neural Sandbox Framework for Classification: A Concept Based Method of Leveraging LLMs for Text Classification
(
Poster
)
>
|
Mostafa Mushsharat · Nabeel Mohammed · Mohammad Ruhul Amin 🔗 |
-
|
Understanding In-Context Learning in Transformers and LLMs by Learning to Learn Discrete Functions
(
Poster
)
>
|
Satwik Bhattamishra · Arkil Patel · Phil Blunsom · Varun Kanade 🔗 |
-
|
Can LLM-Generated Misinformation Be Detected?
(
Poster
)
>
|
Canyu Chen · Kai Shu 🔗 |
-
|
Jailbreaking Black Box Large Language Models in Twenty Queries
(
Poster
)
>
|
Patrick Chao · Alexander Robey · Edgar Dobriban · Hamed Hassani · George J. Pappas · Eric Wong 🔗 |
-
|
Learning Through Consistency for Prompt Tuning
(
Poster
)
>
|
Shuvendu Roy · Ali Etemad 🔗 |
-
|
How does fine-tuning affect your model? Mechanistic analysis on procedural tasks
(
Poster
)
>
|
Samyak Jain · Robert Kirk · Ekdeep S Lubana · Robert Dick · Hidenori Tanaka · Tim Rocktäschel · Edward Grefenstette · David Krueger 🔗 |
-
|
How Robust is Google's Bard to Adversarial Image Attacks?
(
Poster
)
>
|
Yinpeng Dong · Huanran Chen · Jiawei Chen · Zhengwei Fang · Xiao Yang · Yichi Zhang · Yu Tian · Hang Su · Jun Zhu 🔗 |
-
|
Effective Data Augmentation With Diffusion Models
(
Poster
)
>
SlidesLive Video |
Brandon Trabucco · Kyle Doherty · Max Gurinas · Russ Salakhutdinov 🔗 |
-
|
Leveraging Cross-Modal Neighbor Representation for Improved CLIP Classification
(
Poster
)
>
|
Chao Yi · Lu Ren · De-Chuan Zhan · Han-Jia Ye 🔗 |
-
|
Group Preference Optimization: Few-Shot Alignment of Large Language Models
(
Poster
)
>
|
Siyan Zhao · John Dang · Aditya Grover 🔗 |
-
|
HART: Efficient Adaptation via Regularized Autoregressive Parameter Generation
(
Poster
)
>
|
Chen Liang · Nikos Karampatziakis · Tuo Zhao · Weizhu Chen 🔗 |
-
|
SELF-EXPLAIN: Teaching Large Language Models to Reason Complex Questions by Themselves
(
Poster
)
>
|
Jiachen Zhao · Zonghai Yao · Zhichao Yang · Hong Yu 🔗 |
-
|
SmoothLLM: Defending Large Language Models Against Jailbreaking Attacks
(
Poster
)
>
|
Alexander Robey · Eric Wong · Hamed Hassani · George J. Pappas 🔗 |
-
|
Evaluating Adversarial Defense in the Era of Large Language Models
(
Poster
)
>
|
Joachim Studnia · Simiao Zuo · Xiaodong Liu · Qiang Lou · Jian Jiao · Denis Charles 🔗 |
-
|
LoraHub: Efficient Cross-Task Generalization via Dynamic LoRA Composition
(
Poster
)
>
|
Chengsong Huang · Qian Liu · Bill Yuchen Lin · Chao Du · Tianyu Pang · Min Lin 🔗 |
-
|
ICL-Markup: Structuring In-Context Learning using Soft-Token Tags
(
Poster
)
>
|
Marc-Etienne Brunet · Ashton Anderson · Richard Zemel 🔗 |
-
|
Lag-Llama: Towards Time-Series Foundation Models
(
Poster
)
>
SlidesLive Video |
15 presentersKashif Rasul · Arjun Ashok · Marin Biloš · Andrew Williams · Arian Khorasani · George Adamopoulos · Rishika Bhagwatkar · Hena Ghonia · Nadhir Hassen · Anderson Schneider · Sahil Garg · Alexandre Drouin · Nicolas Chapados · Yuriy Nevmyvaka · Irina Rish |
-
|
Analyzing Zero-Shot Abilities of Vision-Language Models on Video Understanding Tasks
(
Poster
)
>
|
Avinash Madasu · Anahita Bhiwandiwalla · VASUDEV LAL 🔗 |
-
|
TART: A plug-and-play Transformer module for task-agnostic reasoning
(
Poster
)
>
|
Kush Bhatia · Avanika Narayan · Christopher De Sa · Christopher Ré 🔗 |
-
|
READ: Recurrent Adaptation of Large Transformers
(
Poster
)
>
SlidesLive Video |
Sid Wang · John Nguyen · Ke Li · Carole-Jean Wu 🔗 |
-
|
Hierarchical Network Fusion for Multi-Modal Electron Micrograph Representation Learning with Foundational Large Language Models
(
Poster
)
>
|
Sagar Srinivas Sakhinana · Sannidhi G N K Geethan · Venkataramana Runkana 🔗 |
-
|
SAD: Segment Any RGBD
(
Poster
)
>
SlidesLive Video |
Jun CEN · Yizheng Wu · Kewei Wang · Xingyi Li · Jingkang Yang · Yixuan Pei · Lingdong Kong · Ziwei Liu · Qifeng Chen 🔗 |
-
|
Estimating Uncertainty in Multimodal Foundation Models using Public Internet Data
(
Poster
)
>
|
Shiladitya Dutta · Hongbo Wei · Lars van der Laan · Ahmed Alaa 🔗 |
-
|
Crossing New Frontiers: Knowledge-Augmented Large Language Model Prompting for Zero-Shot Text-Based De Novo Molecule Design
(
Poster
)
>
|
Sagar Srinivas Sakhinana · Venkataramana Runkana 🔗 |
-
|
Investigating Hiring Bias in Large Language Models
(
Poster
)
>
|
Akshaj Kumar Veldanda · Fabian Grob · Shailja Thakur · Hammond Pearce · Benjamin Tan · Ramesh Karri · Siddharth Garg 🔗 |
-
|
LOWA: Localize Objects in the Wild with Attributes
(
Poster
)
>
SlidesLive Video |
Xiaoyuan Guo · Kezhen Chen · Jinmeng Rao · Yawen Zhang · Baochen Sun · Jie Yang 🔗 |
-
|
Understanding the Vulnerability of CLIP to Image Compression
(
Poster
)
>
SlidesLive Video |
Cangxiong Chen · Vinay Namboodiri · Julian Padget 🔗 |
-
|
Towards General-Purpose In-Context Learning Agents
(
Poster
)
>
|
Louis Kirsch · James Harrison · Daniel Freeman · Jascha Sohl-Dickstein · Jürgen Schmidhuber 🔗 |
-
|
HePCo: Data-Free Heterogeneous Prompt Consolidation for Continual Federated Learning
(
Poster
)
>
|
Shaunak Halbe · James S Smith · Junjiao Tian · Zsolt Kira 🔗 |
-
|
Image Clustering Conditioned on Text Criteria
(
Poster
)
>
|
Sehyun Kwon · Jaeseung Park · Minkyu Kim · Jaewoong Cho · Ernest Ryu · Kangwook Lee 🔗 |
-
|
On the Relationship between Skill Neurons and Robustness in Prompt Tuning
(
Poster
)
>
|
Leon Ackermann · Xenia Ohmer 🔗 |
-
|
Latent Skill Discovery for Chain-of-Thought Reasoning
(
Poster
)
>
|
Zifan Xu · Haozhu Wang · Dmitriy Bespalov · Peter Stone · Yanjun Qi 🔗 |
-
|
Visual Cropping Improves Zero-Shot Question Answering of Multimodal Large Language Models
(
Poster
)
>
SlidesLive Video |
jiarui zhang · Mahyar Khayatkhoei · Prateek Chhikara · Filip Ilievski 🔗 |
-
|
Uncertainty In Natural Language Explanations Of Large Language Models
(
Poster
)
>
|
Sree Harsha Tanneru · Chirag Agarwal · Himabindu Lakkaraju 🔗 |
-
|
Benchmarking Robustness of Text-Image Composed Retrieval
(
Poster
)
>
SlidesLive Video |
Shitong Sun · Jindong Gu · Shaogang Gong 🔗 |
-
|
Foundation Models Can Robustify Themselves, For Free
(
Poster
)
>
|
Dyah Adila · Changho Shin · Linrong Cai · Frederic Sala 🔗 |
-
|
Improving Few-Shot Generalization by Exploring and Exploiting Auxiliary Data
(
Poster
)
>
|
Alon Albalak · Colin Raffel · William Yang Wang 🔗 |
-
|
Predicting the Performance of Foundation Models via Agreement-on-the-line
(
Poster
)
>
|
Rahul Saxena · Aman Mehra · Taeyoun Kim · Christina Baek · J. Zico Kolter · Aditi Raghunathan 🔗 |
-
|
Automatic Hallucination Assessment for Aligned Large Language Models via Transferable Adversarial Attacks
(
Poster
)
>
|
Xiaodong Yu · Hao Cheng · Xiaodong Liu · Dan Roth · Jianfeng Gao 🔗 |
-
|
Task Arithmetic with LoRA for Continual Learning
(
Poster
)
>
|
Rajas Chitale · Ankit Vaidya · Aditya Kane · Archana Ghotkar 🔗 |
-
|
Batch Calibration: Rethinking Calibration for In-Context Learning and Prompt Engineering
(
Poster
)
>
SlidesLive Video |
Han Zhou · Xingchen Wan · Lev Proleev · Diana Mincu · Jilin Chen · Katherine Heller · Subhrajit Roy 🔗 |
-
|
Teaching language models with canonical examples
(
Poster
)
>
|
John Hewitt · Sarah Chen · Percy Liang · Christopher D Manning 🔗 |
-
|
How Do Large Multimodal Models Really Fare in Classical Vision Few-Shot Challenges? A Deep Dive
(
Poster
)
>
SlidesLive Video |
Qing Guo · Prashan Wanigasekara · Jian Zheng · Jacob Fang · Xinwei Deng · Chenyang Tao 🔗 |
-
|
Think before you speak: Training Language Models With Pause Tokens
(
Poster
)
>
|
Sachin Goyal · Ziwei Ji · Ankit Rawat · Aditya Menon · Sanjiv Kumar · Vaishnavh Nagarajan 🔗 |
-
|
Stepwise Inference in Transformers: Exploring a Synthetic Graph Navigation Task
(
Poster
)
>
|
Mikail Khona · Maya Okawa · Rahul Ramesh · Kento Nishi · Robert Dick · Ekdeep S Lubana · Hidenori Tanaka 🔗 |
-
|
DSPy: Compiling Declarative Language Model Calls into Self-Improving Pipelines
(
Poster
)
>
|
13 presentersOmar Khattab · Arnav Singhvi · Paridhi Maheshwari · Zhiyuan Zhang · Keshav Santhanam · Sri Vardhamanan A · Saiful Haq · Ashutosh Sharma · Thomas Joshi · Hanna Moazam · Heather Miller · Matei A Zaharia · Christopher Potts |
-
|
Fooling GPT with adversarial in-context examples for text classification
(
Poster
)
>
|
Sudhanshu Ranjan · Chung-En Sun · Linbo Liu · Lily Weng 🔗 |
-
|
Dr.ICL: Demonstration-Retrieved In-context Learning
(
Poster
)
>
|
Man Luo · Xin Xu · Zhuyun Dai · Panupong Pasupat · Mehran Kazemi · Chitta Baral · Vaiva Imbrasaite · Vincent Zhao 🔗 |
-
|
Trained Transformers Learn Linear Models In-Context
(
Poster
)
>
|
Ruiqi Zhang · Spencer Frei · Peter Bartlett 🔗 |
-
|
Zero-shot Conversational Summarization Evaluations with small Large Language Models
(
Poster
)
>
|
Ramesh Manuvinakurike · Saurav Sahay · Sangeeta Manepalli · Lama Nachman 🔗 |
-
|
In-Context Learning and Bayesian Inference
(
Poster
)
>
SlidesLive Video |
Madhur Panwar · Kabir Ahuja · Navin Goyal 🔗 |
-
|
AutoVP: An Automated Visual Prompting Framework and Benchmark
(
Poster
)
>
|
Hsi-Ai Tsao · Lei Hsiung · Pin-Yu Chen · Sijia Liu · Tsung-Yi Ho 🔗 |
-
|
How Capable Can a Transformer Become? A Study on Synthetic, Interpretable Tasks
(
Poster
)
>
|
Rahul Ramesh · Mikail Khona · Robert Dick · Hidenori Tanaka · Ekdeep S Lubana 🔗 |
-
|
What’s important here?: Opportunities and Challenges of LLM in retrieving information from Web Interface
(
Poster
)
>
|
Faria Huq · Jeffrey Bigham · Nikolas Martelaro 🔗 |
-
|
One shot localization and segmentation of medical images with Foundation Models
(
Poster
)
>
SlidesLive Video |
13 presentersDeepa Anand · Gurunath Reddy Madhumani · Vanika Singhal · Dattesh Shanbhag · Shriram KS · Uday Patil · Chitresh Bhushan · Kavitha Manickam · Dawei Gui · Rakesh Mullick · Avinash Gopal · Parminder Bhatia · Taha Kass-Hout |
-
|
A Universal Prompt Generator for Large Language Models
(
Poster
)
>
|
Gurusha Juneja · Amit Sharma 🔗 |
-
|
AutoMix: Mixing Models with Few-shot Self and Meta Verification ( Poster ) > link |
12 presentersAman Madaan · Pranjal Aggarwal · Ankit Anand · Srividya Pranavi Potharaju · Swaroop Mishra · Pei Zhou · Aditya Gupta · Dheeraj Rajagopal · Yiming Yang · Shyam Upadhyay · - Mausam · Manaal Faruqui |
-
|
Coded Prompts for Large Language Models
(
Poster
)
>
|
Ziqian Lin · Yicong Chen · Yuchen Zeng · Kangwook Lee 🔗 |
-
|
Deep Embedded Clustering in Few-shot Representations (DECiFR)
(
Poster
)
>
|
Yasaman Esfandiari · Rodolfo Valiente Romero · Amir Rahimi 🔗 |
-
|
Divide and Conquer: Two-Level Problem Remodeling for Large-Scale Few-Shot Learning
(
Poster
)
>
|
Mohamadreza Fereydooni · Hosein Hasani · Ali Razghandi · Mahdieh Soleymani 🔗 |
-
|
JAB: Joint Adversarial Prompting and Belief Augmentation
(
Poster
)
>
SlidesLive Video |
Ninareh Mehrabi · Palash Goyal · Anil Ramakrishna · Jwala Dhamala · Shalini Ghosh · Richard Zemel · Kai-Wei Chang · Aram Galstyan · Rahul Gupta 🔗 |
-
|
Function Constrained Program Synthesis
(
Poster
)
>
|
Patrick A. Hajali · Ignas Budvytis 🔗 |
-
|
On the Out of Distribution Robustness of Foundation Models in Medical Image Segmentation
(
Poster
)
>
|
12 presentersDuy M. H. Nguyen · Tan Ngoc Pham · Nghiem Diep · Nghi Phan · Quang Pham · Vinh Tong · Binh Nguyen · Ngan Le · Nhat Ho · Pengtao Xie · Daniel Sonntag · Mathias Niepert |
-
|
Sweeping Heterogeneity with Smart MoPs: Mixture of Prompts for LLM Task Adaptation
(
Poster
)
>
|
Chen Dun · Mirian Hipolito Garcia · Guoqing Zheng · Ahmed Awadallah · Anastasios Kyrillidis · Robert Sim 🔗 |
-
|
Zero-shot Improvement of Object Counting with CLIP ( Poster ) > link | Ruisu Zhang · Yicong Chen · Kangwook Lee 🔗 |
-
|
Efficient Online Data Mixing For Language Model Pre-Training
(
Poster
)
>
|
Alon Albalak · Liangming Pan · Colin Raffel · William Yang Wang 🔗 |
-
|
The Consensus Game: Language Model Generation via Equilibrium Search
(
Poster
)
>
|
Athul Jacob · Yikang Shen · Gabriele Farina · Jacob Andreas 🔗 |
-
|
Cross-Modal Learning for Chemistry Property Prediction: Large Language Models Meet Graph Machine Learning
(
Poster
)
>
|
Sagar Srinivas Sakhinana · Venkataramana Runkana 🔗 |
-
|
Trainable Transformer in Transformer
(
Poster
)
>
SlidesLive Video |
Abhishek Panigrahi · Sadhika Malladi · Mengzhou Xia · Sanjeev Arora 🔗 |
-
|
OverPrompt: Enhancing ChatGPT through Efficient In-Context Learning
(
Poster
)
>
SlidesLive Video |
Jiazheng Li · Runcong Zhao · Yongxin Yang · Yulan He · Lin Gui 🔗 |
-
|
Fewshot learning on global multimodal embeddings for earth observation tasks
(
Poster
)
>
|
Matthew Allen · Francisco Dorr · Joseph Alejandro Gallego Mejia · Laura Martínez-Ferrer · Anna Jungbluth · Freddie Kalaitzis · Raul Ramos-Pollán 🔗 |
-
|
Selective Prediction For Open-Ended Question Answering in Black-Box Vision-Language Models
(
Poster
)
>
|
Zaid Khan · Yun Fu 🔗 |
-
|
LOVM: Language-Only Vision Model Selection
(
Poster
)
>
|
Orr Zohar · Shih-Cheng Huang · Kuan-Chieh Wang · Serena Yeung 🔗 |
-
|
Context is Environment
(
Poster
)
>
|
Sharut Gupta · David Lopez-Paz · Stefanie Jegelka · Kartik Ahuja 🔗 |
-
|
InstructEval: Systematic Evaluation of Instruction Selection Methods
(
Poster
)
>
|
Anirudh Ajith · Mengzhou Xia · Ameet Deshpande · Karthik Narasimhan 🔗 |
-
|
PATHFINDER: Guided Search over Multi-Step Reasoning Paths
(
Poster
)
>
|
Olga Golovneva · Sean O'Brien · Ramakanth Pasunuru · Tianlu Wang · Luke Zettlemoyer · Maryam Fazel-Zarandi · Asli Celikyilmaz 🔗 |
-
|
Enhancing Large Language Models with Ensemble of Critics for Mitigating Toxicity and Hallucination
(
Poster
)
>
SlidesLive Video |
Sajad Mousavi · Ricardo Luna Gutierrez · Desik Rengarajan · Vineet Gundecha · Ashwin Ramesh Babu · Avisek Naug · Antonio Guillen-Perez · Soumyendu Sarkar 🔗 |
-
|
Meta- (out-of-context) learning in neural networks
(
Poster
)
>
|
Dmitrii Krasheninnikov · Egor Krasheninnikov · Bruno Mlodozeniec · David Krueger 🔗 |
-
|
Zero-shot Clustering of Embeddings with Pretrained and Self-Supervised Learnt Encoders
(
Poster
)
>
|
Scott Lowe · Joakim Bruslund Haurum · Sageev Oore · Thomas Moeslund · Graham Taylor 🔗 |
-
|
Flexible visual prompts for in context learning in computer vision
(
Poster
)
>
|
Thomas Foster · Ioana Croitoru · Robert Dorfman · Christoffer Edlund · Thomas Varsavsky · Jon Almazan 🔗 |
-
|
Why Larger Language Models Do In-context Learning Differently?
(
Poster
)
>
|
Zhenmei Shi · Junyi Wei · Zhuoyan Xu · Yingyu Liang 🔗 |
-
|
Analyzing ChatGPT’s Behavior Shifts Over Time
(
Poster
)
>
|
Lingjiao Chen · Matei A Zaharia · James Zou 🔗 |
-
|
Are Large Language Models Post Hoc Explainers?
(
Poster
)
>
|
Nicholas Kroeger · Dan Ley · Satyapriya Krishna · Chirag Agarwal · Himabindu Lakkaraju 🔗 |
-
|
CLIPA-v2: Scaling CLIP Training with 81.1% Zero-shot ImageNet Accuracy within a $10,000 Budget
(
Poster
)
>
|
Xianhang Li · Zeyu Wang · Cihang Xie 🔗 |
-
|
Inferring Latent Class Statistics from Text for Robust Visual Few-Shot Learning
(
Poster
)
>
|
Yassir BENDOU · Bastien Pasdeloup · Giulia Lioi · Vincent Gripon · Fabien Cardinaux · Ghouthi BOUKLI HACENE · Lukas Mauch 🔗 |
-
|
Tensor Trust: Interpretable Prompt Injection Attacks from an Online Game
(
Spotlight
)
>
|
12 presentersSam Toyer · Olivia Watkins · Ethan Mendes · Justin Svegliato · Luke Bailey · Tiffany Wang · Isaac Ong · Karim Elmaaroufi · Pieter Abbeel · Trevor Darrell · Alan Ritter · Stuart J Russell |
-
|
Understanding In-Context Learning in Transformers and LLMs by Learning to Learn Discrete Functions
(
Spotlight
)
>
|
Satwik Bhattamishra · Arkil Patel · Phil Blunsom · Varun Kanade 🔗 |
-
|
Learning Through Consistency for Prompt Tuning
(
Spotlight
)
>
|
Shuvendu Roy · Ali Etemad 🔗 |
-
|
Effective Data Augmentation With Diffusion Models
(
Spotlight
)
>
|
Brandon Trabucco · Kyle Doherty · Max Gurinas · Russ Salakhutdinov 🔗 |
-
|
Evaluating Adversarial Defense in the Era of Large Language Models
(
Spotlight
)
>
|
Joachim Studnia · Simiao Zuo · Xiaodong Liu · Qiang Lou · Jian Jiao · Denis Charles 🔗 |
-
|
LoraHub: Efficient Cross-Task Generalization via Dynamic LoRA Composition
(
Spotlight
)
>
|
Chengsong Huang · Qian Liu · Bill Yuchen Lin · Chao Du · Tianyu Pang · Min Lin 🔗 |
-
|
TART: A plug-and-play Transformer module for task-agnostic reasoning
(
Spotlight
)
>
|
Kush Bhatia · Avanika Narayan · Christopher De Sa · Christopher Ré 🔗 |
-
|
Estimating Uncertainty in Multimodal Foundation Models using Public Internet Data
(
Spotlight
)
>
SlidesLive Video |
Shiladitya Dutta · Hongbo Wei · Lars van der Laan · Ahmed Alaa 🔗 |
-
|
Towards General-Purpose In-Context Learning Agents
(
Spotlight
)
>
|
Louis Kirsch · James Harrison · Daniel Freeman · Jascha Sohl-Dickstein · Jürgen Schmidhuber 🔗 |
-
|
Uncertainty In Natural Language Explanations Of Large Language Models
(
Spotlight
)
>
|
Sree Harsha Tanneru · Chirag Agarwal · Himabindu Lakkaraju 🔗 |
-
|
Batch Calibration: Rethinking Calibration for In-Context Learning and Prompt Engineering
(
Spotlight
)
>
|
Han Zhou · Xingchen Wan · Lev Proleev · Diana Mincu · Jilin Chen · Katherine Heller · Subhrajit Roy 🔗 |
-
|
Trained Transformers Learn Linear Models In-Context
(
Spotlight
)
>
|
Ruiqi Zhang · Spencer Frei · Peter Bartlett 🔗 |
-
|
A Universal Prompt Generator for Large Language Models
(
Spotlight
)
>
SlidesLive Video |
Gurusha Juneja · Amit Sharma 🔗 |
-
|
Efficient Online Data Mixing For Language Model Pre-Training
(
Spotlight
)
>
|
Alon Albalak · Liangming Pan · Colin Raffel · William Yang Wang 🔗 |
-
|
InstructEval: Systematic Evaluation of Instruction Selection Methods
(
Spotlight
)
>
|
Anirudh Ajith · Mengzhou Xia · Ameet Deshpande · Karthik Narasimhan 🔗 |