Skip to yearly menu bar Skip to main content


Poster

DICES Dataset: Diversity in Conversational AI Evaluation for Safety

Lora Aroyo · Alex Taylor · Mark Díaz · Christopher Homan · Alicia Parrish · Gregory Serapio-García · Vinodkumar Prabhakaran · Ding Wang

Great Hall & Hall B1+B2 (level 1) #1602

Abstract:

Machine learning approaches often require training and evaluation datasets with a clear separation between positive and negative examples. This requirement overly simplifies the natural subjectivity present in many tasks, and obscures the inherent diversity in human perceptions and opinions about many content items. Preserving the variance in content and diversity in human perceptions in datasets is often quite expensive and laborious. This is especially troubling when building safety datasets for conversational AI systems, as safety is socio-culturally situated in this context. To demonstrate this crucial aspect of conversational AI safety, and to facilitate in-depth model performance analyses, we introduce the DICES (Diversity In Conversational AI Evaluation for Safety) dataset that contains fine-grained demographics information about raters, high replication of ratings per item to ensure statistical power for analyses, and encodes rater votes as distributions across different demographics to allow for in-depth explorations of different aggregation strategies. The DICES dataset enables the observation and measurement of variance, ambiguity, and diversity in the context of safety for conversational AI. We further describe a set of metrics that show how rater diversity influences safety perception across different geographic regions, ethnicity groups, age groups, and genders. The goal of the DICES dataset is to be used as a shared resource and benchmark that respects diverse perspectives during safety evaluation of conversational AI systems.

Chat is not available.