Skip to yearly menu bar Skip to main content


Poster

Objaverse-XL: A Universe of 10M+ 3D Objects

Matt Deitke · Ruoshi Liu · Matthew Wallingford · Huong Ngo · Oscar Michel · Aditya Kusupati · Alan Fan · Christian Laforte · Vikram Voleti · Samir Yitzhak Gadre · Eli VanderBilt · Aniruddha Kembhavi · Carl Vondrick · Georgia Gkioxari · Kiana Ehsani · Ludwig Schmidt · Ali Farhadi

Great Hall & Hall B1+B2 (level 1) #322

Abstract:

Natural language processing and 2D vision models have attained remarkable proficiency on many tasks primarily by escalating the scale of training data. However, 3D vision tasks have not seen the same progress, in part due to the challenges of acquiring high-quality 3D data. In this work, we present Objaverse-XL, a dataset of over 10 million 3D objects. Our compilation comprises deduplicated 3D objects from a diverse set of sources, including manually designed objects, photogrammetry scans of landmarks and everyday items, and professional scans of historic and antique artifacts. Representing the largest scale and diversity in the realm of 3D datasets, Objaverse-XL enables significant new possibilities for 3D vision. Our experiments demonstrate the vast improvements enabled with the scale provided by Objaverse-XL. We show that by training Zero123 on novel view synthesis, utilizing over 100 million multi-view rendered images, we achieve strong zero-shot generalization abilities. We hope that releasing Objaverse-XL will enable further innovations in the field of 3D vision at scale.

Chat is not available.