Skip to yearly menu bar Skip to main content


Poster

AllSim: Simulating and Benchmarking Resource Allocation Policies in Multi-User Systems

Jeroen Berrevoets · Daniel Jarrett · Alex Chan · Mihaela van der Schaar

Great Hall & Hall B1+B2 (level 1) #105

Abstract:

Numerous real-world systems, ranging from healthcare to energy grids, involve users competing for finite and potentially scarce resources. Designing policies for resource allocation in such real-world systems is challenging for many reasons, including the changing nature of user types and their (possibly urgent) need for resources. Researchers have developed numerous machine learning solutions for determining resource allocation policies in these challenging settings. However, a key limitation has been the absence of good methods and test-beds for benchmarking these policies; almost all resource allocation policies are benchmarked in environments which are either completely synthetic or do not allow any deviation from historical data. In this paper we introduce AllSim, which is a benchmarking environment for realistically simulating the impact and utility of policies for resource allocation in systems in which users compete for such scarce resources. Building such a benchmarking environment is challenging because it needs to successfully take into account the entire collective of potential users and the impact a resource allocation policy has on all the other users in the system. AllSim's benchmarking environment is modular (each component being parameterized individually), learnable (informed by historical data), and customizable (adaptable to changing conditions). These, when interacting with an allocation policy, produce a dataset of simulated outcomes for evaluation and comparison of such policies. We believe AllSim is an essential step towards a more systematic evaluation of policies for scarce resource allocation compared to current approaches for benchmarking such methods.

Chat is not available.