Skip to yearly menu bar Skip to main content


Poster

PopSign ASL v1.0: An Isolated American Sign Language Dataset Collected via Smartphones

Thad Starner · Sean Forbes · Matthew So · David Martin · Rohit Sridhar · Gururaj Deshpande · Sam Sepah · Sahir Shahryar · Khushi Bhardwaj · Tyler Kwok · Daksh Sehgal · Saad Hassan · Bill Neubauer · Sofia Vempala · Alec Tan · Jocelyn Heath · Unnathi Kumar · Priyanka Mosur · Tavenner Hall · Rajandeep Singh · Christopher Cui · Glenn Cameron · Sohier Dane · Garrett Tanzer

Great Hall & Hall B1+B2 (level 1) #406

Abstract:

PopSign is a smartphone-based bubble-shooter game that helps hearing parentsof deaf infants learn sign language. To help parents practice their ability to sign,PopSign is integrating sign language recognition as part of its gameplay. Fortraining the recognizer, we introduce the PopSign ASL v1.0 dataset that collectsexamples of 250 isolated American Sign Language (ASL) signs using Pixel 4Asmartphone selfie cameras in a variety of environments. It is the largest publiclyavailable, isolated sign dataset by number of examples and is the first dataset tofocus on one-handed, smartphone signs. We collected over 210,000 examplesat 1944x2592 resolution made by 47 consenting Deaf adult signers for whomAmerican Sign Language is their primary language. We manually reviewed 217,866of these examples, of which 175,023 (approximately 700 per sign) were the signintended for the educational game. 39,304 examples were recognizable as a signbut were not the desired variant or were a different sign. We provide a training setof 31 signers, a validation set of eight signers, and a test set of eight signers. Abaseline LSTM model for the 250-sign vocabulary achieves 82.1% accuracy (81.9%class-weighted F1 score) on the validation set and 84.2% (83.9% class-weightedF1 score) on the test set. Gameplay suggests that accuracy will be sufficient forcreating educational games involving sign language recognition.

Chat is not available.