Spotlight Poster
Learning Functional Transduction
Mathieu Chalvidal · Thomas Serre · Rufin VanRullen
Great Hall & Hall B1+B2 (level 1) #907
Research in statistical learning has polarized into two general approaches to perform regression analysis: Transductive methods construct estimates directly based on exemplar data using generic relational principles which might suffer from the curse of dimensionality. Conversely, inductive methods can potentially fit highly complex functions at the cost of compute-intensive solution searches. In this work, we leverage the theory of vector-valued Reproducing Kernel Banach Spaces (RKBS) to propose a hybrid approach: We show that transductive regression systems can be meta-learned with gradient descent to form efficient in-context neural approximators of function defined over both finite and infinite-dimensional spaces (operator regression). Once trained, our Transducer can almost instantaneously capture new functional relationships and produce original image estimates, given a few pairs of input and output examples. We demonstrate the benefit of our meta-learned transductive approach to model physical systems influenced by varying external factors with little data at a fraction of the usual deep learning training costs for partial differential equations and climate modeling applications.