Poster
Adaptive Selective Sampling for Online Prediction with Experts
Rui Castro · Fredrik Hellström · Tim van Erven
Great Hall & Hall B1+B2 (level 1) #1813
We consider online prediction of a binary sequence with expert advice. For this setting, we devise label-efficient forecasting algorithms, which use a selective sampling scheme that enables collecting much fewer labels than standard procedures. For the general case without a perfect expert, we prove best-of-both-worlds guarantees, demonstrating that the proposed forecasting algorithm always queries sufficiently many labels in the worst case to obtain optimal regret guarantees, while simultaneously querying much fewer labels in more benign settings. Specifically, for a scenario where one expert is strictly better than the others in expectation, we show that the label complexity of the label-efficient forecaster is roughly upper-bounded by the square root of the number of rounds. Finally, we present numerical experiments empirically showing that the normalized regret of the label-efficient forecaster can asymptotically match known minimax rates for pool-based active learning, suggesting it can optimally adapt to benign settings.