Poster
Optimization and Bayes: A Trade-off for Overparameterized Neural Networks
Zhengmian Hu · Heng Huang
Great Hall & Hall B1+B2 (level 1) #1127
This paper proposes a novel algorithm, Transformative Bayesian Learning (TansBL), which bridges the gap between empirical risk minimization (ERM) and Bayesian learning for neural networks. We compare ERM, which uses gradient descent to optimize, and Bayesian learning with importance sampling for their generalization and computational complexity. We derive the first algorithm-dependent PAC-Bayesian generalization bound for infinitely wide networks based on an exact KL divergence between the trained posterior distribution obtained by infinitesimal step size gradient descent and a Gaussian prior. Moreover, we show how to transform gradient-based optimization into importance sampling by incorporating a weight. While Bayesian learning has better generalization, it suffers from low sampling efficiency. Optimization methods, on the other hand, have good sampling efficiency but poor generalization. Our proposed algorithm TansBL enables a trade-off between generalization and sampling efficiency.