Skip to yearly menu bar Skip to main content


Poster

Patch n’ Pack: NaViT, a Vision Transformer for any Aspect Ratio and Resolution

Mostafa Dehghani · Basil Mustafa · Josip Djolonga · Jonathan Heek · Matthias Minderer · Mathilde Caron · Andreas Steiner · Andreas Steiner · Joan Puigcerver · Robert Geirhos · Ibrahim Alabdulmohsin · Avital Oliver · Piotr Padlewski · Piotr Padlewski · Alexey Gritsenko · Mario Lucic · Neil Houlsby

Great Hall & Hall B1+B2 (level 1) #2014

Abstract:

The ubiquitous and demonstrably suboptimal choice of resizing images to a fixed resolution before processing them with computer vision models has not yet been successfully challenged. However, models such as the Vision Transformer (ViT) offer flexible sequence-based modeling, and hence varying input sequence lengths. We take advantage of this with NaViT (Native Resolution ViT) which uses sequence packing during training to process inputs of arbitrary resolutions and aspect ratios. Alongside flexible model usage, we demonstrate improved training efficiency for large-scale supervised and contrastive image-text pretraining.NaViT can be efficiently transferred to standard tasks such as image and video classification, object detection, and semantic segmentation and leads to improved results on robustness and fairness benchmarks. At inference time, the input resolution flexibility can be used to smoothly navigate the test-time cost-performance trade-off. We believe that NaViTmarks a departure from the standard, CNN-designed, input and modelling pipeline used by most computer vision models, and represents a promising direction for ViTs.

Chat is not available.