Skip to yearly menu bar Skip to main content


Poster

Adversarial Resilience in Sequential Prediction via Abstention

Surbhi Goel · Steve Hanneke · Shay Moran · Abhishek Shetty

Great Hall & Hall B1+B2 (level 1) #1718

Abstract:

We study the problem of sequential prediction in the stochastic setting with an adversary that is allowed to inject clean-label adversarial (or out-of-distribution) examples. Algorithms designed to handle purely stochastic data tend to fail in the presence of such adversarial examples, often leading to erroneous predictions. This is undesirable in many high-stakes applications such as medical recommendations, where abstaining from predictions on adversarial examples is preferable to misclassification. On the other hand, assuming fully adversarial data leads to very pessimistic bounds that are often vacuous in practice. To move away from these pessimistic guarantees, we propose a new model of sequential prediction that sits between the purely stochastic and fully adversarial settings by allowing the learner to abstain from making a prediction at no cost on adversarial examples, thereby asking the learner to make predictions with certainty. Assuming access to the marginal distribution on the non-adversarial examples, we design a learner whose error scales with the VC dimension (mirroring the stochastic setting) of the hypothesis class, as opposed to the Littlestone dimension which characterizes the fully adversarial setting. Furthermore, we design learners for VC dimension~1 classes and the class of axis-aligned rectangles, which work even in the absence of access to the marginal distribution. Our key technical contribution is a novel measure for quantifying uncertainty for learning VC classes, which may be of independent interest.

Chat is not available.