Poster
in
Workshop: Table Representation Learning Workshop
Unlocking the Transferability of Tokens in Deep Models for Tabular Data
Qile Zhou · Han-Jia Ye · Leye Wang · De-Chuan Zhan
Keywords: [ transfer learning ] [ tabular data ]
Fine-tuning a pre-trained deep neural network has become a successful paradigm in various machine learning tasks. However, such a paradigm becomes particularly challenging with tabular data when there are discrepancies between the feature sets of pre-trained models and the target tasks. In this paper, we propose TabToken, a method aims at enhancing the quality of feature tokens (i.e., embeddings of tabular features). TabToken allows for the utilization of pre-trained models when the upstream and downstream tasks share overlapping features, facilitating model fine-tuning even with limited training examples. Specifically, we introduce a contrastive objective that regularizes the tokens, capturing the semantics within and across features. During the pre-training stage, the tokens are learned jointly with top-layer deep models such as transformer. In the downstream task, tokens of the shared features are kept fixed while TabToken efficiently fine-tunes the remaining parts of the model. TabToken not only enables knowledge transfer from a pre-trained model to tasks with heterogeneous features, but also enhances the discriminative ability of deep tabular models in standard classification and regression tasks.