Poster
in
Workshop: NeurIPS 2023 Workshop: Machine Learning and the Physical Sciences
Forward Gradients for Data-Driven CFD Wall Models
Jan Hueckelheim · Tadbhagya Kumar · Krishnan Raghavan · Pinaki Pal
Computational Fluid Dynamics (CFD) is used in the design and optimization of gas turbines and many other industrial/ scientific applications. However, the practical use is often limited by the high computational cost, and the accurate resolution of near-wall flow is a significant contributor to this cost. Machine learning (ML) and other data-driven methods can complement existing wall models. Nevertheless, training these models is bottlenecked by the large computational effort and memory footprint demanded by back-propagation. Recent work has presented alternatives for computing gradients of neural networks where a separate forward and backward sweep is not needed and storage of intermediate results between sweeps is not required because an unbiased estimator for the gradient is computed in a single forward sweep. In this paper, we discuss the application of this approach for training a subgrid wall model that could potentially be used as a surrogate in wall-bounded flow CFD simulations to reduce the computational overhead while preserving predictive accuracy.