Skip to yearly menu bar Skip to main content


Poster
in
Workshop: NeurIPS 2023 Workshop: Machine Learning and the Physical Sciences

Evaluating Physically Motivated Loss Functions for Photometric Redshift Estimation

Andrew Engel · Jan Strube


Abstract:

Physical constraints have been suggested to make neural network models more generalizable, act scientifically plausible, and be more data-efficient over unconstrained baselines. In this report, we present preliminary work on evaluating the effects of adding soft physical constraints to computer vision neural networks trained to estimate the conditional density of redshift on input galaxy images for the Sloan Digital Sky Survey. We introduce physically motivated soft constraint terms that are not implemented with differential or integral operators. We frame this work as a simple ablation study where the effect of including soft physical constraints is compared to an unconstrained baseline. We compare networks using standard point estimate metrics for photometric redshift estimation, as well as metrics to evaluate how faithful our conditional density estimate represents the probability over the ensemble of our test dataset. We find no evidence that the implemented soft physical constraints are more effective regularizers than augmentation.

Chat is not available.