Skip to yearly menu bar Skip to main content


Poster
in
Workshop: Deep Generative Models for Health

Semantic Map Guided Synthesis of Wireless Capsule Endoscopy Images using Diffusion Models

Haejin Lee · Jeongwoo Ju · Jonghyuck Lee · Yeoun Joo Lee · Heechul Jung


Abstract:

Wireless capsule endoscopy (WCE) is a non-invasive method for visualizing the gastrointestinal (GI) tract, crucial for diagnosing GI tract diseases. However, interpreting WCE results can be time-consuming and tiring. Existing studies have employed deep neural networks (DNNs) for automatic GI tract lesion detection, but acquiring sufficient training examples, particularly due to privacy concerns, remains a challenge. Public WCE databases lack diversity and quantity. To address this, we propose a novel approach leveraging generative models, specifically the diffusion model (DM), for generating diverse WCE images. Our model incorporates semantic map resulted from visualization scale (VS) engine, enhancing the controllability and diversity of generated images. We evaluate our approach using visual inspection and visual Turing tests, demonstrating its effectiveness in generating realistic and diverse WCE images.

Chat is not available.