Poster
in
Workshop: Optimal Transport and Machine Learning
Invertible normalizing flow neural networks by JKO scheme
Chen Xu · Xiuyuan Cheng · Yao Xie
Normalizing flow is a class of deep generative models for efficient sampling and density estimation. In practice, the flow often appears as a chain of invertible neural network blocks; to facilitate training, existing works have regularized flow trajectories and designed special network architectures. The current paper develops a neural ODE flow network inspired by the Jordan-Kinderleherer-Otto (JKO) scheme, which allows efficient block-wise training of the residual blocks without sampling SDE trajectories or inner loops of score matching or variational learning. As the JKO scheme unfolds the dynamic of gradient flow, the proposed model naturally stacks residual network blocks one by one, reducing the memory load and difficulty in performing end-to-end deep flow network training. We also develop adaptive time reparameterization of the flow network with a progressive refinement of the trajectory in probability space, which improves the model training efficiency and accuracy in practice. Using numerical experiments with synthetic and real data, we show that the proposed JKO-iFlow model achieves similar or better performance in generating new samples compared with the existing flow and diffusion models at a significantly reduced computational and memory cost.