Poster
E(n) Equivariant Normalizing Flows
Victor Garcia Satorras · Emiel Hoogeboom · Fabian Fuchs · Ingmar Posner · Max Welling
Keywords: [ Generative Model ] [ Graph Learning ] [ Deep Learning ]
This paper introduces a generative model equivariant to Euclidean symmetries: E(n) Equivariant Normalizing Flows (E-NFs). To construct E-NFs, we take the discriminative E(n) graph neural networks and integrate them as a differential equation to obtain an invertible equivariant function: a continuous-time normalizing flow. We demonstrate that E-NFs considerably outperform baselines and existing methods from the literature on particle systems such as DW4 and LJ13, and on molecules from QM9 in terms of log-likelihood. To the best of our knowledge, this is the first flow that jointly generates molecule features and positions in 3D.