Skip to yearly menu bar Skip to main content


Poster

Adversarial Teacher-Student Representation Learning for Domain Generalization

Fu-En Yang · Yuan-Chia Cheng · Zu-Yun Shiau · Frank Wang

Keywords: [ Domain Adaptation ] [ Representation Learning ] [ Machine Learning ] [ Vision ]


Abstract:

Domain generalization (DG) aims to transfer the learning task from a single or multiple source domains to unseen target domains. To extract and leverage the information which exhibits sufficient generalization ability, we propose a simple yet effective approach of Adversarial Teacher-Student Representation Learning, with the goal of deriving the domain generalizable representations via generating and exploring out-of-source data distributions. Our proposed framework advances Teacher-Student learning in an adversarial learning manner, which alternates between knowledge-distillation based representation learning and novel-domain data augmentation. The former progressively updates the teacher network for deriving domain-generalizable representations, while the latter synthesizes data out-of-source yet plausible distributions. Extensive image classification experiments on benchmark datasets in multiple and single source DG settings confirm that, our model exhibits sufficient generalization ability and performs favorably against state-of-the-art DG methods.

Chat is not available.