Skip to yearly menu bar Skip to main content


Poster

Duplex Sequence-to-Sequence Learning for Reversible Machine Translation

Zaixiang Zheng · Hao Zhou · Shujian Huang · Jiajun Chen · Jingjing Xu · Lei Li

Keywords: [ Transformers ]


Abstract:

Sequence-to-sequence learning naturally has two directions. How to effectively utilize supervision signals from both directions? Existing approaches either require two separate models, or a multitask-learned model but with inferior performance. In this paper, we propose REDER (Reversible Duplex Transformer), a parameter-efficient model and apply it to machine translation. Either end of REDER can simultaneously input and output a distinct language. Thus REDER enables {\em reversible machine translation} by simply flipping the input and output ends. Experiments verify that REDER achieves the first success of reversible machine translation, which helps outperform its multitask-trained baselines by up to 1.3 BLEU.

Chat is not available.