Poster
in
Workshop: Bayesian Deep Learning
Being a Bit Frequentist Improves Bayesian Neural Networks
Agustinus Kristiadi · Matthias Hein · Philipp Hennig
Despite their compelling theoretical properties, Bayesian neural networks (BNNs) tend to perform worse than frequentist methods in classification-based uncertainty quantification (UQ) tasks such as out-of-distribution (OOD) detection. In this paper, based on empirical findings in prior works, we hypothesize that this issue is because even recent Bayesian methods have never considered OOD data in their training processes, even though this ``OOD training'' technique is an integral part of state-of-the-art frequentist UQ methods. To validate this, we treat OOD data as a first-class citizen in BNN training by exploring several ways of incorporating OOD data in Bayesian inference. We show in experiments that OOD-trained BNNs are competitive to, if not better than recent frequentist baselines. This work thus provides strong baselines for future work in Bayesian deep learning.