Poster
in
Workshop: Machine Learning and the Physical Sciences
Neural network is heterogeneous: Phase matters more
Yuqi Nie
Abstract:
We find a heterogeneity in both complex and real valued neural networks with the insight from wave optics, claiming a much more important role of phase in the weight matrix than its amplitude counterpart. In complex-valued neural networks, we show that among different types of pruning, the weight matrix with only phase information preserved achieves the best accuracy, which holds robustly under various depths and widths. The conclusion can be generalized to real-valued neural networks, where signs take the place of phases. These inspiring findings enrich the techniques of network pruning and binary computation.
Chat is not available.