Skip to yearly menu bar Skip to main content


Poster
in
Workshop: Machine Learning and the Physical Sciences

The Quantum Trellis: A classical algorithm for sampling the parton shower with interference effects

Sebastian Macaluso · Kyle Cranmer


Abstract:

Simulations of high-energy particle collisions, such as those used at the Large Hadron Collider, are based on quantum field theory; however, many approximations are made in practice. For example, the simulation of the parton shower, which gives rise to objects called `jets', is based on a semi-classical approximation that neglects various interference effects. While there is a desire to incorporate interference effects, new computational techniques are needed to cope with the exponential growth in complexity associated to quantum processes. We present a classical algorithm called the quantum trellis to efficiently compute the un-normalized probability density over N-body phase space including all interference effects, and we pair this with an MCMC-based sampling strategy. This provides a potential path forward for classical computers and a strong baseline for approaches based on quantum computing.

Chat is not available.