Poster
in
Workshop: Machine Learning and the Physical Sciences
Learning Size and Shape of Calabi-Yau Spaces
Robin Schneider
Abstract:
We present a new machine learning library for computing metrics of string compactification spaces. We benchmark the performance on Monte-Carlo sampled integrals against previous numerical approximations and find that our neural networks are more sample- and computation-efficient. We are the first to provide the possibility to compute these metrics for arbitrary, user-specified shape and size parameters of the compact space and observe a linear relation between optimization of the partial differential equation we are training against and vanishing Ricci curvature.
Chat is not available.