Poster
in
Workshop: Deep Reinforcement Learning
On Using Hamiltonian Monte Carlo Sampling for Reinforcement Learning Problems in High-dimension
Udari Madhushani · Biswadip Dey · Naomi Leonard · Amit Chakraborty
Abstract:
Value function based reinforcement learning (RL) algorithms, for example, $Q$-learning, learn optimal policies from datasets of actions, rewards, and state transitions. However, when the underlying state transition dynamics are stochastic and evolve on a high-dimensional space, generating independent and identically distributed (IID) data samples for creating these datasets poses a significant challenge due to the intractability of the associated normalizing integral. In these scenarios, Hamiltonian Monte Carlo (HMC) sampling offers a computationally tractable way to generate data for training RL algorithms. In this paper, we introduce a framework, called Hamiltonian $Q$-Learning, that demonstrates, both theoretically and empirically, that $Q$ values can be learned from a dataset generated by HMC samples of actions, rewards, and state transitions. Furthermore, to exploit the underlying low-rank structure of the $Q$ function, Hamiltonian $Q$-Learning uses a matrix completion algorithm for reconstructing the updated $Q$ function from $Q$ value updates over a much smaller subset of state-action pairs. Thus, by providing an efficient way to apply $Q$-learning in stochastic, high-dimensional settings, the proposed approach broadens the scope of RL algorithms for real-world applications.
Chat is not available.