Skip to yearly menu bar Skip to main content


Poster
in
Workshop: New Frontiers in Federated Learning: Privacy, Fairness, Robustness, Personalization and Data Ownership

FedBABU: Towards Enhanced Representation for Federated Image Classification

Jaehoon Oh · SangMook Kim · Se-Young Yun


Abstract:

Federated learning has evolved to improve a single global model under data heterogeneity (as a curse) or to develop multiple personalized models using data heterogeneity (as a blessing). However, there has been little research considering both directions simultaneously. In this paper, we first investigate the relationship between them by analyzing Federated Averaging at the client level and determine that a better federated global model performance does not constantly improve personalization. To elucidate the cause of this personalization performance degradation problem, we decompose the entire network into the body (i.e., extractor), related to universality, and the head (i.e., classifier), related to personalization. We then point out that this problem stems from training the head. Based on this observation, we propose a novel federated learning algorithm, coined as FedBABU, which updates only the body of the model during federated training (i.e., the head is randomly initialized and never updated), and the head is fine-tuned for personalization during the evaluation process. Extensive experiments show consistent performance improvements and an efficient personalization of FedBABU.

Chat is not available.