Poster
in
Workshop: The Symbiosis of Deep Learning and Differential Equations
Uncertainty Quantification in Neural Differential Equations
Olga Graf · Pablo Flores · Pavlos Protopapas
Abstract:
Uncertainty quantification (UQ) helps to make trustworthy predictions based on collected observations and uncertain domain knowledge. With increased usage of deep learning in various applications, the need for efficient UQ methods that can make deep models more reliable has increased as well. Among applications that can benefit from effective handling of uncertainty are the deep learning based differential equation (DE) solvers. We adapt several state-of-the-art UQ methods to get the predictive uncertainty for DE solutions and show the results on four different DE types.
Chat is not available.