Skip to yearly menu bar Skip to main content


Workshop

Federated Learning: Recent Advances and New Challenges

Shiqiang Wang · Nathalie Baracaldo · Olivia Choudhury · Gauri Joshi · Peter Richtarik · Praneeth Vepakomma · Han Yu

Room 298 - 299

Fri 2 Dec, 6:30 a.m. PST

Training machine learning models in a centralized fashion often faces significant challenges due to regulatory and privacy concerns in real-world use cases. These include distributed training data, computational resources to create and maintain a central data repository, and regulatory guidelines (GDPR, HIPAA) that restrict sharing sensitive data. Federated learning (FL) is a new paradigm in machine learning that can mitigate these challenges by training a global model using distributed data, without the need for data sharing. The extensive application of machine learning to analyze and draw insight from real-world, distributed, and sensitive data necessitates familiarization with and adoption of this relevant and timely topic among the scientific community.

Despite the advantages of FL, and its successful application in certain industry-based cases, this field is still in its infancy due to new challenges that are imposed by limited visibility of the training data, potential lack of trust among participants training a single model, potential privacy inferences, and in some cases, limited or unreliable connectivity.

The goal of this workshop is to bring together researchers and practitioners interested in FL. This day-long event will facilitate interaction among students, scholars, and industry professionals from around the world to understand the topic, identify technical challenges, and discuss potential solutions. This will lead to an overall advancement of FL and its impact in the community, while noting that FL has become an increasingly popular topic in the machine learning community in recent years.

Chat is not available.
Timezone: America/Los_Angeles

Schedule