Workshop
Symmetry and Geometry in Neural Representations (NeurReps)
Sophia Sanborn · Christian A Shewmake · Simone Azeglio · Arianna Di Bernardo · Nina Miolane
Room 283 - 285
Sat 3 Dec, 6:15 a.m. PST
In recent years, there has been a growing appreciation for the importance of modeling the geometric structure in data — a perspective that has developed in both the geometric deep learning and applied geometry communities. In parallel, an emerging set of findings in neuroscience suggests that group-equivariance and the preservation of geometry and topology may be fundamental principles of neural coding in biology.
This workshop will bring together researchers from geometric deep learning and geometric statistics with theoretical and empirical neuroscientists whose work reveals the elegant implementation of geometric structure in biological neural circuitry. Group theory and geometry were instrumental in unifying models of fundamental forces and elementary particles in 20th-century physics. Likewise, they have the potential to unify our understanding of how neural systems form useful representations of the world.
The goal of this workshop is to unify the emerging paradigm shifts towards structured representations in deep networks and the geometric modeling of neural data — while promoting a solid mathematical foundation in algebra, geometry, and topology.
Schedule
Sat 6:15 a.m. - 6:30 a.m.
|
Opening Remarks
(
Opening remarks
)
>
SlidesLive Video |
Sophia Sanborn 🔗 |
Sat 6:30 a.m. - 7:00 a.m.
|
In search of invariance in brains and machines
(
Invited Talk
)
>
SlidesLive Video |
Bruno Olshausen 🔗 |
Sat 7:00 a.m. - 7:30 a.m.
|
Symmetry-Based Representations for Artificial and Biological Intelligence
(
Invited Talk
)
>
SlidesLive Video |
Irina Higgins 🔗 |
Sat 7:30 a.m. - 8:00 a.m.
|
From Equivariance to Naturality
(
Invited Talk
)
>
SlidesLive Video |
Taco Cohen 🔗 |
Sat 8:00 a.m. - 8:30 a.m.
|
Coffee Break
|
🔗 |
Sat 8:30 a.m. - 8:40 a.m.
|
Is the information geometry of probabilistic population codes learnable?
(
Cotributed Talk - Spotlight
)
>
link
SlidesLive Video |
John Vastola · Zach Cohen · Jan Drugowitsch 🔗 |
Sat 8:40 a.m. - 8:50 a.m.
|
Computing Representations for Lie Algebraic Networks
(
Contributed Talk - Spotlight
)
>
link
SlidesLive Video |
Noah Shutty · Casimir Wierzynski 🔗 |
Sat 8:50 a.m. - 9:00 a.m.
|
Kendall Shape-VAE : Learning Shapes in a Generative Framework
(
Contributed Talk - Spotlight
)
>
link
SlidesLive Video |
Sharvaree Vadgama · Jakub Tomczak · Erik Bekkers 🔗 |
Sat 9:00 a.m. - 9:05 a.m.
|
Equivariance with Learned Canonical Mappings
(
Contributed Talk - Lightning
)
>
link
SlidesLive Video |
Oumar Kaba · Arnab Mondal · Yan Zhang · Yoshua Bengio · Siamak Ravanbakhsh 🔗 |
Sat 9:05 a.m. - 9:10 a.m.
|
Capacity of Group-invariant Linear Readouts from Equivariant Representations: How Many Objects can be Linearly Classified Under All Possible Views?
(
Contributed Talk - Lightning
)
>
link
SlidesLive Video |
Matthew Farrell · Blake Bordelon · Shubhendu Trivedi · Cengiz Pehlevan 🔗 |
Sat 9:10 a.m. - 9:15 a.m.
|
Do Neural Networks Trained with Topological Features Learn Different Internal Representations?
(
Contributed Talk - Lightning
)
>
link
SlidesLive Video |
Sarah McGuire · Shane Jackson · Tegan Emerson · Henry Kvinge 🔗 |
Sat 9:15 a.m. - 9:20 a.m.
|
Expander Graph Propagation
(
Contributed Talk - Lightning
)
>
link
SlidesLive Video |
Andreea Deac · Marc Lackenby · Petar Veličković 🔗 |
Sat 9:20 a.m. - 9:25 a.m.
|
Homomorphism AutoEncoder --- Learning Group Structured Representations from Observed Transitions
(
Contributed Talk - Lightning
)
>
link
SlidesLive Video |
Hamza Keurti · Hsiao-Ru Pan · Michel Besserve · Benjamin F. Grewe · Bernhard Schölkopf 🔗 |
Sat 9:25 a.m. - 9:30 a.m.
|
Sheaf Attention Networks
(
Contributed Talk - Lightning
)
>
link
SlidesLive Video |
Federico Barbero · Cristian Bodnar · Haitz Sáez de Ocáriz Borde · Pietro Lió 🔗 |
Sat 9:30 a.m. - 9:35 a.m.
|
On the Expressive Power of Geometric Graph Neural Networks
(
Contributed Talk - Lightning
)
>
link
SlidesLive Video |
Cristian Bodnar · Chaitanya K. Joshi · Simon Mathis · Taco Cohen · Pietro Liò 🔗 |
Sat 9:35 a.m. - 10:05 a.m.
|
Panel Discussion I: Geometric and topological principles for representation learning in ML
(
Discussion Panel
)
>
SlidesLive Video |
Irina Higgins · Taco Cohen · Erik Bekkers · Nina Miolane · Rose Yu 🔗 |
Sat 10:05 a.m. - 11:30 p.m.
|
Lunch Break
|
🔗 |
Sat 11:30 a.m. - 12:00 p.m.
|
Generative models of non-Euclidean neural population dynamics
(
Invited Talk
)
>
SlidesLive Video |
Kristopher Jensen 🔗 |
Sat 12:00 p.m. - 12:30 p.m.
|
Robustness of representations in artificial and biological neural networks
(
Invited Talk
)
>
SlidesLive Video |
Gabriel Kreiman 🔗 |
Sat 12:30 p.m. - 1:00 p.m.
|
Neural Ideograms and Equivariant Representation Learning
(
Invited Talk
)
>
SlidesLive Video |
Erik Bekkers 🔗 |
Sat 1:00 p.m. - 1:30 p.m.
|
Panel Discussion II: Geometric and topological principles for representations in the brain
(
Discussion Panel
)
>
SlidesLive Video |
Bruno Olshausen · Kristopher Jensen · Gabriel Kreiman · Manu Madhav · Christian A Shewmake 🔗 |
Sat 1:30 p.m. - 3:00 p.m.
|
Poster Session
(
Poster Session
)
>
|
🔗 |
Sat 2:55 p.m. - 3:00 p.m.
|
Closing remarks
(
Closing remarks
)
>
|
🔗 |
-
|
Exact Visualization of Deep Neural Network Geometry and Decision Boundary ( Poster ) > link | Ahmed Imtiaz Humayun · Randall Balestriero · Richard Baraniuk 🔗 |
-
|
Graph Neural Networks for Connectivity Inference in Spatially Patterned Neural Responses ( Poster ) > link | Taehoon Park · JuHyeon Kim · DongHee Kang · Kijung Yoon 🔗 |
-
|
Object-centric causal representation learning ( Poster ) > link | Amin Mansouri · Jason Hartford · Kartik Ahuja · Yoshua Bengio 🔗 |
-
|
Equivariance with Learned Canonical Mappings ( Poster ) > link | Oumar Kaba · Arnab Mondal · Yan Zhang · Yoshua Bengio · Siamak Ravanbakhsh 🔗 |
-
|
Category-Level 6D Object Pose Estimation in the Wild: A Semi-Supervised Learning Approach and A New Dataset ( Poster ) > link | Yanjie Ze · Xiaolong Wang 🔗 |
-
|
Charting Flat Minima Using the Conserved Quantities of Gradient Flow ( Poster ) > link | Bo Zhao · Iordan Ganev · Robin Walters · Rose Yu · Nima Dehmamy 🔗 |
-
|
On the Ambiguity in Classification ( Poster ) > link | Arif Dönmez 🔗 |
-
|
Learning Generative Models with Invariance to Symmetries ( Poster ) > link | James Allingham · Javier Antorán · Shreyas Padhy · Eric Nalisnick · José Miguel Hernández-Lobato 🔗 |
-
|
Geometry of inter-areal interactions in mouse visual cortex ( Poster ) > link | Ramakrishnan Iyer · Joshua H Siegle · Gayathri Mahalingam · Shawn Olsen · Stefan Mihalas 🔗 |
-
|
Learning unfolded networks with a cyclic group structure ( Poster ) > link | Emmanouil Theodosis · Demba Ba 🔗 |
-
|
Improved Representation of Asymmetrical Distances with Interval Quasimetric Embeddings ( Poster ) > link | Tongzhou Wang · Phillip Isola 🔗 |
-
|
Learning and Shaping Manifold Attractors for Computation in Gated Neural ODEs ( Poster ) > link | Timothy Kim · Tankut Can · Kamesh Krishnamurthy 🔗 |
-
|
See and Copy: Generation of complex compositional movements from modular and geometric RNN representations ( Poster ) > link | Sunny Duan · Mikail Khona · Adrian Bertagnoli · Sarthak Chandra · Ila Fiete 🔗 |
-
|
Testing geometric representation hypotheses from simulated place cell recordings ( Poster ) > link | Thibault Niederhauser · Adam Lester · Nina Miolane · Khanh Dao Duc · Manu Madhav 🔗 |
-
|
Sheaf Attention Networks ( Poster ) > link | Federico Barbero · Cristian Bodnar · Haitz Sáez de Ocáriz Borde · Pietro Lió 🔗 |
-
|
Learning Invariance Manifolds of Visual Sensory Neurons ( Poster ) > link | Luca Baroni · Mohammad Bashiri · Konstantin Willeke · Ján Antolík · Fabian Sinz 🔗 |
-
|
Barron's Theorem for Equivariant Networks ( Poster ) > link | Hannah Lawrence 🔗 |
-
|
Fuzzy c-Means Clustering in Persistence Diagram Space for Deep Learning Model Selection ( Poster ) > link | Thomas Davies · Jack Aspinall · Bryan Wilder · Long Tran-Thanh 🔗 |
-
|
Moving Frame Net: SE(3)-Equivariant Network for Volumes ( Poster ) > link | Mateus Sangalli · Samy Blusseau · Santiago Velasco-Forero · Jesus Angulo 🔗 |
-
|
Periodic Signal Recovery with Regularized Sine Neural Networks ( Poster ) > link | David A. R. Robin · Kevin Scaman · marc lelarge 🔗 |
-
|
Topological Ensemble Detection with Differentiable Yoking ( Poster ) > link | David Klindt · Sigurd Gaukstad · Erik Hermansen · Melvin Vaupel · Benjamin Dunn 🔗 |
-
|
Kendall Shape-VAE : Learning Shapes in a Generative Framework ( Poster ) > link | Sharvaree Vadgama · Jakub Tomczak · Erik Bekkers 🔗 |
-
|
Understanding Optimization Challenges when Encoding to Geometric Structures ( Poster ) > link | Babak Esmaeili · Robin Walters · Heiko Zimmermann · Jan-Willem van de Meent 🔗 |
-
|
Surfing on the Neural Sheaf ( Poster ) > link | Julian Suk · Lorenzo Giusti · Tamir Hemo · Miguel Lopez · Marco La Vecchia · Konstantinos Barmpas · Cristian Bodnar 🔗 |
-
|
Unsupervised learning of geometrical features from images by explicit group actions enforcement ( Poster ) > link | Francesco Calisto · Luca Bottero · Valerio Pagliarino 🔗 |
-
|
Learning to Continually Learn with Topological Regularization ( Poster ) > link | Tananun Songdechakraiwut · Xiaoshuang Yin · Barry Van Veen 🔗 |
-
|
Optimal Latent Transport ( Poster ) > link | Hrittik Roy · Søren Hauberg 🔗 |
-
|
Practical Structured Riemannian Optimization with Momentum by using Generalized Normal Coordinates ( Poster ) > link | Wu Lin · Valentin Duruisseaux · Melvin Leok · Frank Nielsen · Mohammad Emtiyaz Khan · Mark Schmidt 🔗 |
-
|
Image to Icosahedral Projection for $\mathrm{SO}(3)$ Object Reasoning from Single-View Images ( Poster ) > link | David Klee · Ondrej Biza · Robert Platt · Robin Walters 🔗 |
-
|
Conformal Isometry of Lie Group Representation in Recurrent Network of Grid Cells ( Poster ) > link | Dehong Xu · Ruiqi Gao · Wenhao Zhang · Xue-Xin Wei · Ying Nian Wu 🔗 |
-
|
Breaking the Symmetry: Resolving Symmetry Ambiguities in Equivariant Neural Networks ( Poster ) > link | Sidhika Balachandar · Adrien Poulenard · Congyue Deng · Leonidas Guibas 🔗 |
-
|
Spatial Symmetry in Slot Attention ( Poster ) > link | Ondrej Biza · Sjoerd van Steenkiste · Mehdi S. M. Sajjadi · Gamaleldin Elsayed · Aravindh Mahendran · Thomas Kipf 🔗 |
-
|
Nonlinear and Commutative Editing in Pretrained GAN Latent Space ( Poster ) > link | Takehiro Aoshima · Takashi Matsubara 🔗 |
-
|
Representing Repeated Structure in Reinforcement Learning Using Symmetric Motifs ( Poster ) > link | Matthew Sargent · Augustine Mavor-Parker · Peter J Bentley · Caswell Barry 🔗 |
-
|
Hierarchical Abstraction for Combinatorial Generalization in Object Rearrangement ( Poster ) > link | Michael Chang · Alyssa L Dayan · Franziska Meier · Tom Griffiths · Sergey Levine · Amy Zhang 🔗 |
-
|
Neuromorphic Visual Scene Understanding with Resonator Networks (in brief) ( Poster ) > link | Alpha Renner · Giacomo Indiveri · Lazar Supic · Andreea Danielescu · Bruno Olshausen · Fritz Sommer · Yulia Sandamirskaya · Edward Frady 🔗 |
-
|
SeLCA: Self-Supervised Learning of Canonical Axis ( Poster ) > link | Seungwook Kim · Yoonwoo Jeong · Chunghyun Park · Jaesik Park · Minsu Cho 🔗 |
-
|
Neural Implicit Style-net: synthesizing shapes in a preferred style exploiting self supervision ( Poster ) > link | Marco Fumero · Hooman Shayani · Aditya Sanghi · Emanuele Rodolà 🔗 |
-
|
Mixed-Membership Community Detection via Line Graph Curvature ( Poster ) > link | Yu Tian · Zachary Lubberts · Melanie Weber 🔗 |
-
|
Scalable Vector Representation for Topological Data Analysis Based Classification ( Poster ) > link | Tananun Songdechakraiwut · Bryan Krause · Matthew Banks · Kirill Nourski · Barry Van Veen 🔗 |
-
|
Geometry reveals an instructive role of retinal waves as biologically plausible pre-training signals ( Poster ) > link | Andrew Ligeralde · Miah Pitcher · Marla Feller · SueYeon Chung 🔗 |
-
|
Sparse Convolutions on Lie Groups ( Poster ) > link | Tycho van der Ouderaa · Mark van der Wilk 🔗 |
-
|
Equivariant Representations for Non-Free Group Actions ( Poster ) > link | Luis Armando Pérez Rey · Giovanni Luca Marchetti · Danica Kragic · Dmitri Jarnikov · Mike Holenderski 🔗 |
-
|
Capturing cross-session neural population variability through self-supervised identification of consistent neuron ensembles ( Poster ) > link | Justin Jude · Matthew Perich · Lee Miller · Matthias Hennig 🔗 |
-
|
Identifying latent distances with Finslerian geometry ( Poster ) > link | Alison Pouplin · David Eklund · Carl Henrik Ek · Søren Hauberg 🔗 |
-
|
Capacity of Group-invariant Linear Readouts from Equivariant Representations: How Many Objects can be Linearly Classified Under All Possible Views? ( Poster ) > link | Matthew Farrell · Blake Bordelon · Shubhendu Trivedi · Cengiz Pehlevan 🔗 |
-
|
Towards architectural optimization of equivariant neural networks over subgroups ( Poster ) > link | Kaitlin Maile · Dennis Wilson · Patrick Forré 🔗 |
-
|
Lorentz Direct Concatenation for Stable Training in Hyperbolic Neural Networks ( Poster ) > link | Eric Qu · Dongmian Zou 🔗 |
-
|
Generalized Laplacian Positional Encoding for Graph Representation Learning ( Poster ) > link | Sohir Maskey · Ali Parviz · Maximilian Thiessen · Hannes Stärk · Ylli Sadikaj · Haggai Maron 🔗 |
-
|
On the Level Sets and Invariance of Neural Tuning Landscapes ( Poster ) > link | Binxu Wang · Carlos Ponce 🔗 |
-
|
Local Geometry Constraints in V1 with Deep Recurrent Autoencoders ( Poster ) > link | Jonathan Huml · Demba Ba 🔗 |
-
|
Expander Graph Propagation ( Poster ) > link | Andreea Deac · Marc Lackenby · Petar Veličković 🔗 |
-
|
Connectedness of loss landscapes via the lens of Morse theory ( Poster ) > link | Danil Akhtiamov · Matt Thomson 🔗 |
-
|
The Union of Manifolds Hypothesis ( Poster ) > link | Bradley Brown · Anthony Caterini · Brendan Ross · Jesse Cresswell · Gabriel Loaiza-Ganem 🔗 |
-
|
On the Expressive Power of Geometric Graph Neural Networks ( Poster ) > link | Cristian Bodnar · Chaitanya K. Joshi · Simon Mathis · Taco Cohen · Pietro Liò 🔗 |
-
|
Group invariant machine learning by fundamental domain projections ( Poster ) > link | Benjamin Aslan · Daniel Platt · David Sheard 🔗 |
-
|
Hyperbolic and Mixed Geometry Graph Neural Networks ( Poster ) > link | Rishi Sonthalia · Xinyue Cui 🔗 |
-
|
What shapes the loss landscape of self-supervised learning? ( Poster ) > link | Liu Ziyin · Ekdeep S Lubana · Masahito Ueda · Hidenori Tanaka 🔗 |
-
|
Discretization Invariant Learning on Neural Fields ( Poster ) > link | Clinton Wang · Polina Golland 🔗 |
-
|
Training shapes the curvature of shallow neural network representations ( Poster ) > link | Jacob Zavatone-Veth · Julian Rubinfien · Cengiz Pehlevan 🔗 |
-
|
Homomorphism AutoEncoder --- Learning Group Structured Representations from Observed Transitions ( Poster ) > link | Hamza Keurti · Hsiao-Ru Pan · Michel Besserve · Benjamin F. Grewe · Bernhard Schölkopf 🔗 |
-
|
Computing Representations for Lie Algebraic Networks ( Poster ) > link | Noah Shutty · Casimir Wierzynski 🔗 |
-
|
Data-driven emergence of convolutional structure in neural networks ( Poster ) > link | Alessandro Ingrosso · Sebastian Goldt 🔗 |
-
|
Disentangling Images with Lie Group Transformations and Sparse Coding ( Poster ) > link | Ho Yin Chau · Frank Qiu · Yubei Chen · Bruno Olshausen 🔗 |
-
|
Does Geometric Structure in Convolutional Filter Space Provide Filter Redundancy Information? ( Poster ) > link | Anshul Thakur · Vinayak Abrol · Pulkit Sharma 🔗 |
-
|
Is the information geometry of probabilistic population codes learnable? ( Poster ) > link | 🔗 |
-
|
Do Neural Networks Trained with Topological Features Learn Different Internal Representations? ( Poster ) > link | 🔗 |