Skip to yearly menu bar Skip to main content


Poster

Fast and Robust Rank Aggregation against Model Misspecification

YUANGANG PAN · Ivor W. Tsang · Weijie Chen · Gang Niu · Masashi Sugiyama

Hall J (level 1) #1007

Keywords: [ JMLR ] [ Journal Track ]


Abstract:

In rank aggregation (RA), a collection of preferences from different users are summarized into a total order under the assumption of homogeneity of users. Model misspecification in RA arises since the homogeneity assumption fails to be satisfied in the complex real-world situation. Existing robust RAs usually resort to an augmentation of the ranking model to account for additional noises, where the collected preferences can be treated as a noisy perturbation of idealized preferences. Since the majority of robust RAs rely on certain perturbation assumptions, they cannot generalize well to agnostic noise-corrupted preferences in the real world. In this paper, we propose CoarsenRank, which possesses robustness against model misspecification. Specifically, the properties of our CoarsenRank are summarized as follows: (1) CoarsenRank is designed for mild model misspecification, which assumes there exist the ideal preferences (consistent with model assumption) that locate in a neighborhood of the actual preferences. (2) CoarsenRank then performs regular RAs over a neighborhood of the preferences instead of the original data set directly. Therefore, CoarsenRank enjoys robustness against model misspecification within a neighborhood. (3) The neighborhood of the data set is defined via their empirical data distributions. Further, we put an exponential prior on the unknown size of the neighborhood and derive a much-simplified posterior formula for CoarsenRank under particular divergence measures. (4) CoarsenRank is further instantiated to Coarsened Thurstone, Coarsened Bradly-Terry, and Coarsened Plackett-Luce with three popular probability ranking models. Meanwhile, tractable optimization strategies are introduced with regards to each instantiation respectively. In the end, we apply CoarsenRank on four real-world data sets. Experiments show that CoarsenRank is fast and robust, achieving consistent improvements over baseline methods.

Chat is not available.