Skip to yearly menu bar Skip to main content


Poster

[Re] Replication study of 'Data-Driven Methods for Balancing Fairness and Efficiency in Ride-Pooling'

Vera Neplenbroek · Sabijn Perdijk · Victor Prins

Hall J (level 1) #1004

Keywords: [ ReScience - MLRC 2021 ] [ Journal Track ]


Abstract:

We evaluate the following claims related to fairness-based objective functions presented in the original work: (1) For the four objective functions, the success rate in the worst-off neighborhood increases monotonically with respect to the overall success rate. (2) The proposed objective functions do not lead to a higher income for the lowest-earning drivers, nor a higher total income, compared to a request-maximizing objective function. (3) The driver-side fairness objective can outperform a request-maximizing objective in terms of overall success rate and success rate in the worst-off neighborhood. We evaluate the claims by the original authors by (a) replicating their experiments, (b) testing for sensitivity to a different value estimator, (c) examining sensitivity to changes in the preprocessing method, and (d) testing for generalizability by applying their method to a different dataset. We reproduced the first claim since we observed the same monotonic increase of the success rate in the worst-off neighborhood with respect to the overall success rate. The second claim we did not reproduce, since we found that the driver-side fairness objective function obtains a higher income for the lowest-earning drivers than the request-maximizing objective function. We reproduced the third claim, since the driver-side objective function performs best in terms of overall success rate and success rate in the worst-off neighborhood, and also reduces the spread of income. Changes of the value estimator, preprocessing method and even dataset all led to consistent results regarding these claims.

Chat is not available.