Skip to yearly menu bar Skip to main content


Poster

Change Event Dataset for Discovery from Spatio-temporal Remote Sensing Imagery

Utkarsh Mall · Bharath Hariharan · Kavita Bala

Hall J (level 1) #1018

Keywords: [ Self-supervised learning ] [ Satellite Image Time Series ] [ Discovery ]


Abstract:

Satellite imagery is increasingly available, high resolution, and temporally detailed. Changes in spatio-temporal datasets such as satellite images are particularly interesting as they reveal the many events and forces that shape our world. However, finding such interesting and meaningful change events from the vast data is challenging. In this paper, we present new datasets for such change events that include semantically meaningful events like road construction. Instead of manually annotating the very large corpus of satellite images, we introduce a novel unsupervised approach that takes a large spatio-temporal dataset from satellite images and finds interesting change events. To evaluate the meaningfulness on these datasets we create 2 benchmarks namely CaiRoad and CalFire which capture the events of road construction and forest fires. These new benchmarks can be used to evaluate semantic retrieval/classification performance. We explore these benchmarks qualitatively and quantitatively by using several methods and show that these new datasets are indeed challenging for many existing methods.

Chat is not available.