Skip to yearly menu bar Skip to main content


Poster

Uncertainty-Aware Reinforcement Learning for Risk-Sensitive Player Evaluation in Sports Game

Guiliang Liu · Yudong Luo · Oliver Schulte · Pascal Poupart

Hall J (level 1) #339

Keywords: [ Agent Evaluation ] [ Reinforcement Learning ] [ Uncertainty Estimation ] [ Sports Analytic ]


Abstract:

A major task of sports analytics is player evaluation. Previous methods commonly measured the impact of players' actions on desirable outcomes (e.g., goals or winning) without considering the risk induced by stochastic game dynamics. In this paper, we design an uncertainty-aware Reinforcement Learning (RL) framework to learn a risk-sensitive player evaluation metric from stochastic game dynamics. To embed the risk of a player’s movements into the distribution of action-values, we model their 1) aleatoric uncertainty, which represents the intrinsic stochasticity in a sports game, and 2) epistemic uncertainty, which is due to a model's insufficient knowledge regarding Out-of-Distribution (OoD) samples. We demonstrate how a distributional Bellman operator and a feature-space density model can capture these uncertainties. Based on such uncertainty estimation, we propose a Risk-sensitive Game Impact Metric (RiGIM) that measures players' performance over a season by conditioning on a specific confidence level. Empirical evaluation, based on over 9M play-by-play ice hockey and soccer events, shows that RiGIM correlates highly with standard success measures and has a consistent risk sensitivity.

Chat is not available.