Skip to yearly menu bar Skip to main content


Poster

On the non-universality of deep learning: quantifying the cost of symmetry

Emmanuel Abbe · Enric Boix-Adsera

Hall J (level 1) #723

Abstract:

We prove limitations on what neural networks trained by noisy gradient descent (GD) can efficiently learn. Our results apply whenever GD training is equivariant, which holds for many standard architectures and initializations. As applications, (i) we characterize the functions that fully-connected networks can weak-learn on the binary hypercube and unit sphere, demonstrating that depth-2 is as powerful as any other depth for this task; (ii) we extend the merged-staircase necessity result for learning with latent low-dimensional structure [ABM22] to beyond the mean-field regime. Under cryptographic assumptions, we also show hardness results for learning with fully-connected networks trained by stochastic gradient descent (SGD).

Chat is not available.