Skip to yearly menu bar Skip to main content


Poster

Unsupervised Learning under Latent Label Shift

Manley Roberts · Pranav Mani · Saurabh Garg · Zachary Lipton

Hall J (level 1) #803

Keywords: [ Deep Learning ] [ topic modeling ] [ mixture proportion estimation ] [ Unsupervised Learning ] [ anchor word ] [ unsupervised structure discovery ] [ label shift ] [ Domain Adaptation ]


Abstract: What sorts of structure might enable a learner to discover classes from unlabeled data? Traditional approaches rely on feature-space similarity and heroic assumptions on the data. In this paper, we introduce unsupervised learning under Latent Label Shift (LLS), where the label marginals $p_d(y)$ shift but the class conditionals $p(x|y)$ do not. This work instantiates a new principle for identifying classes: elements that shift together group together. For finite input spaces, we establish an isomorphism between LLS and topic modeling: inputs correspond to words, domains to documents, and labels to topics. Addressing continuous data, we prove that when each label's support contains a separable region, analogous to an anchor word, oracle access to $p(d|x)$ suffices to identify $p_d(y)$ and $p_d(y|x)$ up to permutation. Thus motivated, we introduce a practical algorithm that leverages domain-discriminative models as follows: (i) push examples through domain discriminator $p(d|x)$; (ii) discretize the data by clustering examples in $p(d|x)$ space; (iii) perform non-negative matrix factorization on the discrete data; (iv) combine the recovered $p(y|d)$ with the discriminator outputs $p(d|x)$ to compute $p_d(y|x) \; \forall d$. With semisynthetic experiments, we show that our algorithm can leverage domain information to improve upon competitiveunsupervised classification methods. We reveal a failure mode of standard unsupervised classification methods when data-space similarity does not indicate true groupings, and show empirically that our method better handles this case. Our results establish a deep connection between distribution shift and topic modeling, opening promising lines for future work.

Chat is not available.