Skip to yearly menu bar Skip to main content


Poster

Low-Rank Modular Reinforcement Learning via Muscle Synergy

Heng Dong · Tonghan Wang · Jiayuan Liu · Chongjie Zhang

Hall J (level 1) #800

Keywords: [ Low-Rank ] [ Muscle Synergy ] [ Reinforcement Learning ]


Abstract:

Modular Reinforcement Learning (RL) decentralizes the control of multi-joint robots by learning policies for each actuator. Previous work on modular RL has proven its ability to control morphologically different agents with a shared actuator policy. However, with the increase in the Degree of Freedom (DoF) of robots, training a morphology-generalizable modular controller becomes exponentially difficult. Motivated by the way the human central nervous system controls numerous muscles, we propose a Synergy-Oriented LeARning (SOLAR) framework that exploits the redundant nature of DoF in robot control. Actuators are grouped into synergies by an unsupervised learning method, and a synergy action is learned to control multiple actuators in synchrony. In this way, we achieve a low-rank control at the synergy level. We extensively evaluate our method on a variety of robot morphologies, and the results show its superior efficiency and generalizability, especially on robots with a large DoF like Humanoids++ and UNIMALs.

Chat is not available.