Skip to yearly menu bar Skip to main content


Poster

An empirical analysis of compute-optimal large language model training

Jordan Hoffmann · Sebastian Borgeaud · Arthur Mensch · Elena Buchatskaya · Trevor Cai · Eliza Rutherford · Diego de Las Casas · Lisa Anne Hendricks · Johannes Welbl · Aidan Clark · Thomas Hennigan · Eric Noland · Katherine Millican · George van den Driessche · Bogdan Damoc · Aurelia Guy · Simon Osindero · KarĂ©n Simonyan · Erich Elsen · Oriol Vinyals · Jack Rae · Laurent Sifre

Hall J (level 1) #639

Keywords: [ Deep Learning ] [ NLP ] [ Large language models ]

Outstanding Paper Outstanding Paper
[ ]

Abstract: We investigate the optimal model size and number of tokens for training a transformer language model under a given compute budget. We find that current large language models are significantly undertrained, a consequence of the recent focus on scaling language models whilst keeping the amount of training data constant. By training over 400 language models ranging from 70 million to over 16 billion parameters on 5 to 500 billion tokens, we find that for compute-optimal training, the model size and the number of training tokens should be scaled equally: for every doubling of model size the number of training tokens should also be doubled. We test this hypothesis by training a predicted compute-optimal model, Chinchilla, that uses the same compute budget as Gopher but with 70B parameters and 4$\times$ more data. Chinchilla uniformly and significantly outperformsGopher (280B), GPT-3 (175B), Jurassic-1 (178B), and Megatron-Turing NLG (530B) on a large range of downstream evaluation tasks. This also means that Chinchilla uses substantially less compute for fine-tuning and inference, greatly facilitating downstream usage. As a highlight, Chinchilla reaches a state-of-the-art average accuracy of 67.5% on the MMLU benchmark, a 7% improvement over Gopher.

Chat is not available.