Skip to yearly menu bar Skip to main content


Poster
in
Workshop: Human in the Loop Learning (HiLL) Workshop at NeurIPS 2022

Can Calibration Improve Sample Prioritization?

Ganesh Tata · Gautham Krishna Gudur · Gopinath Chennupati · Mohammad Emtiyaz Khan


Abstract:

Calibration can reduce overconfident predictions of deep neural networks, but can calibration also accelerate training? In this paper, we show that it can when used to prioritize some examples for performing subset selection. We study the effect of popular calibration techniques in selecting better subsets of samples during training (also called sample prioritization) and observe that calibration can improve the quality of subsets, reduce the number of examples per epoch (by at least 70%), and can thereby speed up the overall training process. We further study the effect of using calibrated pre-trained models coupled with calibration during training to guide sample prioritization, which again seems to improve the quality of samples selected.

Chat is not available.