Poster
in
Workshop: Machine Learning for Autonomous Driving
A Graph Representation for Autonomous Driving
Zerong Xi · Gita Sukthankar
For human drivers, an important aspect of learning to drive is knowing how to pay attention to areas of the roadway that are critical for decision-making while simultaneously ignoring distractions. Similarly, the choice of roadway representation is critical for good performance of an autonomous driving system. An effective representation should be compact and permutation-invariant, while still representing complex vehicle interactions that govern driving decisions. This paper introduces the Graph Representation for Autonomous Driving (GRAD); GRAD generates a global scene representation using a space-time graph which incorporates the estimated future trajectories of other vehicles. We demonstrate that GRAD outperforms the best performing social attention representation on a simulated highway driving task in high traffic densities and also has a low computational complexity in both single and multi-agent settings.