Skip to yearly menu bar Skip to main content


Poster
in
Workshop: Tackling Climate Change with Machine Learning

Analyzing Micro-Level Rebound Effects of Energy Efficient Technologies

Mayank Jain · Mukta Jain · Tarek Alskaif · Soumyabrata Dev


Abstract:

Energy preservation is central to prevent resource depletion, climate change and environment degradation. Investment in raising efficiency of appliances is among the most significant attempts to save energy. Ironically, introduction of many such energy saving appliances increased the total energy consumption instead of reducing it. This effect in literature is attributed to the inherent Jevons paradox (JP) and optimism bias (OB) in consumer behavior. However, the magnitude of these instincts vary among different people. Identification of this magnitude for each household can enable the development of appropriate policies that induce desired energy saving behaviour. Using the RECS 2015 dataset, the paper uses machine learning for each electrical appliance to determine the dependence of their total energy consumption on their energy star rating. This shows that only substitutable appliances register increase in energy demand upon boosted efficiency. Lastly, an index is noted to indicate the varying influence of JP and OB on different households.

Chat is not available.