Skip to yearly menu bar Skip to main content


Poster
in
Workshop: Empowering Communities: A Participatory Approach to AI for Mental Health

Towards Clinical Phenotyping at Scale with Serious Games in Mixed Reality

Mariem Hafsia · Romain Trachel · Guillaume Dumas


Abstract:

Context: Mental healthcare systems are facing an ever-growing demand for appropriate assessment and intervention. Unfortunately, services are often centralized, overloaded, and inaccessible, resulting in greater institutional and social inequities. Therefore, there is an urgent need to establish easy-to-implement methods for early diagnosis and personalized follow-up. In recent years, serious games have started to offer such a clinical tool at scale.Problem: There are critical challenges to the development of secure and inclusive serious games for clinical research. First, the quality of the data and features analyzed must be well defined early in the research process in order to draw meaningful conclusions. Second, algorithms must be aligned with the purpose of the research while not perpetuating bias. Finally, the technologies used must be widely accessible and sufficiently engaging for users.Focus of the paper: To tackle these challenges, we designed a participatory project that combines three innovative technologies: Mixed Reality, Serious Gaming, and Machine Learning. We analyze preliminary data with a focus on the identification of the players and the measurement of classical biases such as sex and environment of data collection. Method: We co-developed with patients and their families, as well as clinicians, a serious game in mixed reality specifically designed for evaluation and therapeutic intervention in autism. Preliminary data were collected from neurotypical individuals with a mixed reality headset. Relevant behavioral features were extracted and used to train several classification algorithms for player identification. Results: We were able to classify players above chance with slightly higher accuracy of neural networks. Interestingly, the accuracy was significantly higher when players were separated by sex. Furthermore, the uncontrolled condition showed better levels of accuracy than the controlled condition. This could mean that the data are richer when the player interacts freely with the game. Our proof of concept cannot exclude the possibility that this last result is linked to the experimental setup. Future development will clarify this point with a larger sample size and the use of deep learning algorithms. Implications: We show that serious games in mixed reality can be a valuable tool to collect clinical data. Our preliminary results highlight important biases to consider for future studies, especially for the sex and context of data collection. Next, we will evaluate the usability, accessibility, and tolerability of the device and the game in autistic children. In addition, we will evaluate the psychometric properties of the serious game, especially for patient stratification. This project aims to develop a platform for the diagnosis and therapy of autism, which can eventually be easily extended to other conditions and settings such as the evaluation of depression or stroke rehabilitation. Such a tool can offer novel possibilities for the study, evaluation, and treatment of mental conditions at scale, and thus ease the burden on healthcare systems.

Chat is not available.