Skip to yearly menu bar Skip to main content


Poster
in
Workshop: Memory in Artificial and Real Intelligence (MemARI)

Transformer needs NMDA receptor nonlinearity for long-term memory

Dong-Kyum Kim · Jea Kwon · Meeyoung Cha · C. Lee

Keywords: [ transformer ] [ NMDAR ] [ hippocampus ] [ Memory ]


Abstract: The NMDA receptor (NMDAR) in the hippocampus is essential for learning and memory. We find an interesting resemblance between deep models' nonlinear activation function and the NMDAR's nonlinear dynamics. In light of a recent study that compared the transformer architecture to the formation of hippocampal memory, this paper presents new findings that NMDAR-like nonlinearity may be essential for consolidating short-term working memory into long-term reference memory. We design a navigation task assessing these two memory functions and show that manipulating the activation function (i.e., mimicking the Mg$^{2+}$-gating of NMDAR) disrupts long-term memory formation. Our experimental data suggest that the concept of place cells and reference memory may reside in the feed-forward network and that nonlinearity plays a key role in these processes. Our findings propose that the transformer architecture and hippocampal spatial representation resemble by sharing the overlapping concept of NMDAR nonlinearity.

Chat is not available.