Poster
in
Workshop: Order up! The Benefits of Higher-Order Optimization in Machine Learning
A Stochastic Conjugate Subgradient Algorithm for Kernelized Support Vector Machines: The Evidence
Di Zhang · Suvrajeet Sen
Kernel Support Vector Machines (Kernel SVM) provide a powerful class of toolsfor classifying data whose classes are best identified via a nonlinear function.While a Kernel SVM is usually treated as a Quadratic Program (QP), its solution is usually obtained using stochastic gradient descent (SGD). In this paper we treat the Kernel SVM as a Stochastic Quadratic Linear Programming (SQLP) problem which motivates a decomposition-based algorithm that separates parameter choice from error estimation, with the latter being separable by data points. In order to takeadvantage of the quadratic structure due to the kernel matrix we introduce aconjugate subgradient approach. While convergence of the new method can be shown, the focus of this brief paper is on computational evidence which illustrates that our method maintains the scalability of SGD, while improving the accuracy of classification/optimization.