Poster
in
Affinity Workshop: Women in Machine Learning
Leveraging artificial intelligence for automatic depression detection using speech recognition.
Hewitt Tusiime · Alvin Nahabwe · Julius Kimuli · Grace Babirye
Abstract:
Depression is a common mental disorder that affects more than 264 million people worldwide. Between 76% and 85% of people in low and middle-income countries receive no treatment for their disorder(P. S. Wang et al.,2017). There are many barriers to effective treatment such as social stigma, lack of resources, and shortage of trained professionals employed in mental health facilities to mention but a few. This study aims to investigate how machine learning algorithms can be used to create self-help applications that detect depression from vocal acoustic features and suggest self-help remedies to bridge the treatment gap.
Chat is not available.