Skip to yearly menu bar Skip to main content


Workshop

Consequential Decisions in Dynamic Environments

Niki Kilbertus · Angela Zhou · Ashia Wilson · John Miller · Lily Hu · Lydia T. Liu · Nathan Kallus · Shira Mitchell

Sat 12 Dec, 8 a.m. PST

Machine learning is rapidly becoming an integral component of sociotechnical systems. Predictions are increasingly used to grant beneficial resources or withhold opportunities, and the consequences of such decisions induce complex social dynamics by changing agent outcomes and prompting individuals to proactively respond to decision rules. This introduces challenges for standard machine learning methodology. Static measurements and training sets poorly capture the complexity of dynamic interactions between algorithms and humans. Strategic adaptation to decision rules can render statistical regularities obsolete. Correlations momentarily observed in data may not be robust enough to support interventions for long-term welfaremits of traditional, static approaches to decision-making, researchers in fields ranging from public policy to computer science to economics have recently begun to view consequential decision-making through a dynamic lens. This workshop will confront the use of machine learning to make consequential decisions in dynamic environments. Work in this area sits at the nexus of several different fields, and the workshop will provide an opportunity to better understand and synthesize social and technical perspectives on these issues and catalyze conversations between researchers and practitioners working across these diverse areas.

Chat is not available.
Timezone: America/Los_Angeles

Schedule