Skip to yearly menu bar Skip to main content


Session

Poster Session 1

Abstract:
Chat is not available.


#0
Rankmax: An Adaptive Projection Alternative to the Softmax Function

Weiwei Kong · Walid Krichene · Nicolas E Mayoraz · Steffen Rendle · Li Zhang

Several machine learning models involve mapping a score vector to a probability vector. Usually, this is done by projecting the score vector onto a probability simplex, and such projections are often characterized as Lipschitz continuous approximations of the argmax function, whose Lipschitz constant is controlled by a parameter that is similar to a softmax temperature. The aforementioned parameter has been observed to affect the quality of these models and is typically either treated as a constant or decayed over time. In this work, we propose a method that adapts this parameter to individual training examples. The resulting method exhibits desirable properties, such as sparsity of its support and numerically efficient implementation, and we find that it can significantly outperform competing non-adaptive projection methods.


#1
Field-wise Learning for Multi-field Categorical Data

Zhibin Li · jian zhang · Yongshun Gong · Yazhou Yao · Qiang Wu

We propose a new method for learning with multi-field categorical data. Multi-field categorical data are usually collected over many heterogeneous groups. These groups can reflect in the categories under a field. The existing methods try to learn a universal model that fits all data, which is challenging and inevitably results in learning a complex model. In contrast, we propose a field-wise learning method leveraging the natural structure of data to learn simple yet efficient one-to-one field-focused models with appropriate constraints. In doing this, the models can be fitted to each category and thus can better capture the underlying differences in data. We present a model that utilizes linear models with variance and low-rank constraints, to help it generalize better and reduce the number of parameters. The model is also interpretable in a field-wise manner. As the dimensionality of multi-field categorical data can be very high, the models applied to such data are mostly over-parameterized. Our theoretical analysis can potentially explain the effect of over-parametrization on the generalization of our model. It also supports the variance constraints in the learning objective. The experiment results on two large-scale datasets show the superior performance of our model, the trend of the generalization error bound, and the interpretability of learning outcomes. Our code is available at https://github.com/lzb5600/Field-wise-Learning.


#2
Deep Diffusion-Invariant Wasserstein Distributional Classification

Sung Woo Park · Dong Wook Shu · Junseok Kwon

In this paper, we present a novel classification method called deep diffusion-invariant Wasserstein distributional classification (DeepWDC). DeepWDC represents input data and labels as probability measures to address severe perturbations in input data. It can output the optimal label measure in terms of diffusion invariance, where the label measure is stationary over time and becomes equivalent to a Gaussian measure. Furthermore, DeepWDC minimizes the 2-Wasserstein distance between the optimal label measure and Gaussian measure, which reduces the Wasserstein uncertainty. Experimental results demonstrate that DeepWDC can substantially enhance the accuracy of several baseline deterministic classification methods and outperforms state-of-the-art-methods on 2D and 3D data containing various types of perturbations (e.g., rotations, impulse noise, and down-scaling).


#3
No Subclass Left Behind: Fine-Grained Robustness in Coarse-Grained Classification Problems

Nimit Sohoni · Jared Dunnmon · Geoffrey Angus · Albert Gu · Christopher Ré

In real-world classification tasks, each class often comprises multiple finer-grained "subclasses." As the subclass labels are frequently unavailable, models trained using only the coarser-grained class labels often exhibit highly variable performance across different subclasses. This phenomenon, known as hidden stratification, has important consequences for models deployed in safety-critical applications such as medicine. We propose GEORGE, a method to both measure and mitigate hidden stratification even when subclass labels are unknown. We first observe that unlabeled subclasses are often separable in the feature space of deep neural networks, and exploit this fact to estimate subclass labels for the training data via clustering techniques. We then use these approximate subclass labels as a form of noisy supervision in a distributionally robust optimization objective. We theoretically characterize the performance of GEORGE in terms of the worst-case generalization error across any subclass. We empirically validate GEORGE on a mix of real-world and benchmark image classification datasets, and show that our approach boosts worst-case subclass accuracy by up to 22 percentage points compared to standard training techniques, without requiring any prior information about the subclasses.


#4
Efficient Clustering Based On A Unified View Of K-means And Ratio-cut

Shenfei Pei · Feiping Nie · Rong Wang · Xuelong Li

Spectral clustering and $k$-means, both as two major traditional clustering methods, are still attracting a lot of attention, although a variety of novel clustering algorithms have been proposed in recent years. Firstly, a unified framework of $k$-means and ratio-cut is revisited, and a novel and efficient clustering algorithm is then proposed based on this framework. The time and space complexity of our method are both linear with respect to the number of samples, and are independent of the number of clusters to construct, more importantly. These properties mean that it is easily scalable and applicable to large practical problems. Extensive experiments on 12 real-world benchmark and 8 facial datasets validate the advantages of the proposed algorithm compared to the state-of-the-art clustering algorithms. In particular, over 15x and 7x speed-up can be obtained with respect to $k$-means on the synthetic dataset of 1 million samples and the benchmark dataset (CelebA) of 200k samples, respectively [GitHub].


#5
Probabilistic Fair Clustering

Seyed Esmaeili · Brian Brubach · Leonidas Tsepenekas · John Dickerson

In clustering problems, a central decision-maker is given a complete metric graph over vertices and must provide a clustering of vertices that minimizes some objective function. In fair clustering problems, vertices are endowed with a color (e.g., membership in a group), and the requirements of a valid clustering might also include the representation of colors in the solution. Prior work in fair clustering assumes complete knowledge of group membership. In this paper, we generalize this by assuming imperfect knowledge of group membership through probabilistic assignments, and present algorithms in this more general setting with approximation ratio guarantees. We also address the problem of "metric membership", where group membership has a notion of order and distance. Experiments are conducted using our proposed algorithms as well as baselines to validate our approach, and also surface nuanced concerns when group membership is not known deterministically.


#6
Sampling-Decomposable Generative Adversarial Recommender

Binbin Jin · Defu Lian · Zheng Liu · Qi Liu · Jianhui Ma · Xing Xie · Enhong Chen

Recommendation techniques are important approaches for alleviating information overload. Being often trained on implicit user feedback, many recommenders suffer from the sparsity challenge due to the lack of explicitly negative samples. The GAN-style recommenders (i.e., IRGAN) addresses the challenge by learning a generator and a discriminator adversarially, such that the generator produces increasingly difficult samples for the discriminator to accelerate optimizing the discrimination objective. However, producing samples from the generator is very time-consuming, and our empirical study shows that the discriminator performs poor in top-k item recommendation. To this end, a theoretical analysis is made for the GAN-style algorithms, showing that the generator of limit capacity is diverged from the optimal generator. This may interpret the limitation of discriminator's performance. Based on these findings, we propose a Sampling-Decomposable Generative Adversarial Recommender (SD-GAR). In the framework, the divergence between some generator and the optimum is compensated by self-normalized importance sampling; the efficiency of sample generation is improved with a sampling-decomposable generator, such that each sample can be generated in O(1) with the Vose-Alias method. Interestingly, due to decomposability of sampling, the generator can be optimized with the closed-form solutions in an alternating manner, being different from policy gradient in the GAN-style algorithms. We extensively evaluate the proposed algorithm with five real-world recommendation datasets. The results show that SD-GAR outperforms IRGAN by 12.4% and the SOTA recommender by 10% on average. Moreover, discriminator training can be 20x faster on the dataset with more than 120K items.


#7
Trading Personalization for Accuracy: Data Debugging in Collaborative Filtering

Long Chen · Yuan Yao · Feng Xu · Miao Xu · Hanghang Tong

Collaborative filtering has been widely used in recommender systems. Existing work has primarily focused on improving the prediction accuracy mainly via either building refined models or incorporating additional side information, yet has largely ignored the inherent distribution of the input rating data. In this paper, we propose a data debugging framework to identify overly personalized ratings whose existence degrades the performance of a given collaborative filtering model. The key idea of the proposed approach is to search for a small set of ratings whose editing (e.g., modification or deletion) would near-optimally improve the recommendation accuracy of a validation set. Experimental results demonstrate that the proposed approach can significantly improve the recommendation accuracy. Furthermore, we observe that the identified ratings significantly deviate from the average ratings of the corresponding items, and the proposed approach tends to modify them towards the average. This result sheds light on the design of future recommender systems in terms of balancing between the overall accuracy and personalization.


#8
Ratio Trace Formulation of Wasserstein Discriminant Analysis

Hexuan Liu · Yunfeng Cai · You-Lin Chen · Ping Li

We reformulate the Wasserstein Discriminant Analysis (WDA) as a ratio trace problem and present an eigensolver-based algorithm to compute the discriminative subspace of WDA. This new formulation, along with the proposed algorithm, can be served as an efficient and more stable alternative to the original trace ratio formulation and its gradient-based algorithm. We provide a rigorous convergence analysis for the proposed algorithm under the self-consistent field framework, which is crucial but missing in the literature. As an application, we combine WDA with low-dimensional clustering techniques, such as K-means, to perform subspace clustering. Numerical experiments on real datasets show promising results of the ratio trace formulation of WDA in both classification and clustering tasks.


#9
Coresets for Regressions with Panel Data

Lingxiao Huang · K Sudhir · Nisheeth Vishnoi

A panel dataset contains features or observations for multiple individuals over multiple time periods and regression problems with panel data are common in statistics and applied ML. When dealing with massive datasets, coresets have emerged as a valuable tool from a computational, storage and privacy perspective, as one needs to work with and share much smaller datasets. However, results on coresets for regression problems thus far have only been available for cross-sectional data ($N$ individuals each observed for a single time unit) or longitudinal data (a single individual observed for $T>1$ time units), but there are no results for panel data ($N>1$, $T>1$). This paper introduces the problem of coresets to panel data settings; we first define coresets for several variants of regression problems with panel data and then present efficient algorithms to construct coresets of size that are independent of $N$ and $T$, and only polynomially depend on $1/\varepsilon$ (where $\varepsilon$ is the error parameter) and the number of regression parameters. Our approach is based on the Feldman-Langberg framework in which a key step is to upper bound the “total sensitivity” that is roughly the sum of maximum influences of all individual-time pairs taken over all possible choices of regression parameters. Empirically, we assess our approach with a synthetic and a real-world datasets; the coreset sizes constructed using our approach are much smaller than the full dataset and coresets indeed accelerate the running time of computing the regression objective.


#10
Multi-task Additive Models for Robust Estimation and Automatic Structure Discovery

Yingjie Wang · Hong Chen · Feng Zheng · Chen Xu · Tieliang Gong · Yanhong Chen

Additive models have attracted much attention for high-dimensional regression estimation and variable selection. However, the existing models are usually limited to the single-task learning framework under the mean squared error (MSE) criterion, where the utilization of variable structure depends heavily on priori knowledge among variables. For high-dimensional observations in real environment, e.g., Coronal Mass Ejections (CMEs) data, the learning performance of previous methods may be degraded seriously due to the complex non-Gaussian noise and the insufficiency of prior knowledge on variable structure. To tackle this problem, we propose a new class of additive models, called Multi-task Additive Models (MAM), by integrating the mode-induced metric, the structure-based regularizer, and additive hypothesis spaces into a bilevel optimization framework. Our approach does not require any priori knowledge of variable structure and suits for high-dimensional data with complex noise, e.g., skewed noise, heavy-tailed noise, and outliers. A smooth iterative optimization algorithm with convergence guarantees is provided to implement MAM efficiently. Experiments on simulations and the CMEs analysis demonstrate the competitive performance of our approach for robust estimation and automatic structure discovery.


#11
Adversarial Learning for Robust Deep Clustering

Xu Yang · Cheng Deng · Kun Wei · Junchi Yan · Wei Liu

Deep clustering integrates embedding and clustering together to obtain the optimal nonlinear embedding space, which is more effective in real-world scenarios compared with conventional clustering methods. However, the robustness of the clustering network is prone to being attenuated especially when it encounters an adversarial attack. A small perturbation in the embedding space will lead to diverse clustering results since the labels are absent. In this paper, we propose a robust deep clustering method based on adversarial learning. Specifically, we first attempt to define adversarial samples in the embedding space for the clustering network. Meanwhile, we devise an adversarial attack strategy to explore samples that easily fool the clustering layers but do not impact the performance of the deep embedding. We then provide a simple yet efficient defense algorithm to improve the robustness of the clustering network. Experimental results on two popular datasets show that the proposed adversarial learning method can significantly enhance the robustness and further improve the overall clustering performance. Particularly, the proposed method is generally applicable to multiple existing clustering frameworks to boost their robustness. The source code is available at https://github.com/xdxuyang/ALRDC.


#12
Adversarial Counterfactual Learning and Evaluation for Recommender System

Da Xu · Chuanwei Ruan · Evren Korpeoglu · Sushant Kumar · Kannan Achan

The feedback data of recommender systems are often subject to what was exposed to the users; however, most learning and evaluation methods do not account for the underlying exposure mechanism. We first show in theory that applying supervised learning to detect user preferences may end up with inconsistent results in the absence of exposure information. The counterfactual propensity-weighting approach from causal inference can account for the exposure mechanism; nevertheless, the partial-observation nature of the feedback data can cause identifiability issues. We propose a principled solution by introducing a minimax empirical risk formulation. We show that the relaxation of the dual problem can be converted to an adversarial game between two recommendation models, where the opponent of the candidate model characterizes the underlying exposure mechanism. We provide learning bounds and conduct extensive simulation studies to illustrate and justify the proposed approach over a broad range of recommendation settings, which shed insights on the various benefits of the proposed approach.


#13
Adversarial Crowdsourcing Through Robust Rank-One Matrix Completion

Qianqian Ma · Alex Olshevsky

We consider the problem of reconstructing a rank-one matrix from a revealed subset of its entries when some of the revealed entries are corrupted with perturbations that are unknown and can be arbitrarily large. It is not known which revealed entries are corrupted. We propose a new algorithm combining alternating minimization with extreme-value filtering and provide sufficient and necessary conditions to recover the original rank-one matrix. In particular, we show that our proposed algorithm is optimal when the set of revealed entries is given by an Erd\H os-R\'enyi random graph.

These results are then applied to the problem of classification from crowdsourced data under the assumption that while the majority of the workers are governed by the standard single-coin David-Skene model (i.e., they output the correct answer with a certain probability), some of the workers can deviate arbitrarily from this model. In particular, the ``adversarial'' workers could even make decisions designed to make the algorithm output an incorrect answer. Extensive experimental results show our algorithm for this problem, based on rank-one matrix completion with perturbations, outperforms all other state-of-the-art methods in such an adversarial scenario.


#14
Interventional Few-Shot Learning

Zhongqi Yue · Hanwang Zhang · Qianru Sun · Xian-Sheng Hua

We uncover an ever-overlooked deficiency in the prevailing Few-Shot Learning (FSL) methods: the pre-trained knowledge is indeed a confounder that limits the performance. This finding is rooted from our causal assumption: a Structural Causal Model (SCM) for the causalities among the pre-trained knowledge, sample features, and labels. Thanks to it, we propose a novel FSL paradigm: Interventional Few-Shot Learning (IFSL). Specifically, we develop three effective IFSL algorithmic implementations based on the backdoor adjustment, which is essentially a causal intervention towards the SCM of many-shot learning: the upper-bound of FSL in a causal view. It is worth noting that the contribution of IFSL is orthogonal to existing fine-tuning and meta-learning based FSL methods, hence IFSL can improve all of them, achieving a new 1-/5-shot state-of-the-art on miniImageNet, tieredImageNet, and cross-domain CUB. Code is released at https://github.com/yue-zhongqi/ifsl.


#15
Neural Methods for Point-wise Dependency Estimation

Yao-Hung Hubert Tsai · Han Zhao · Makoto Yamada · Louis-Philippe Morency · Russ Salakhutdinov

Since its inception, the neural estimation of mutual information (MI) has demonstrated the empirical success of modeling expected dependency between high-dimensional random variables. However, MI is an aggregate statistic and cannot be used to measure point-wise dependency between different events. In this work, instead of estimating the expected dependency, we focus on estimating point-wise dependency (PD), which quantitatively measures how likely two outcomes co-occur. We show that we can naturally obtain PD when we are optimizing MI neural variational bounds. However, optimizing these bounds is challenging due to its large variance in practice. To address this issue, we develop two methods (free of optimizing MI variational bounds): Probabilistic Classifier and Density-Ratio Fitting. We demonstrate the effectiveness of our approaches in 1) MI estimation, 2) self-supervised representation learning, and 3) cross-modal retrieval task.


#16
Multi-label Contrastive Predictive Coding

Jiaming Song · Stefano Ermon

Variational mutual information (MI) estimators are widely used in unsupervised representation learning methods such as contrastive predictive coding (CPC). A lower bound on MI can be obtained from a multi-class classification problem, where a critic attempts to distinguish a positive sample drawn from the underlying joint distribution from (m-1) negative samples drawn from a suitable proposal distribution. Using this approach, MI estimates are bounded above by \log m, and could thus severely underestimate unless m is very large. To overcome this limitation, we introduce a novel estimator based on a multi-label classification problem, where the critic needs to jointly identify \emph{multiple} positive samples at the same time. We show that using the same amount of negative samples, multi-label CPC is able to exceed the \log m bound, while still being a valid lower bound of mutual information. We demonstrate that the proposed approach is able to lead to better mutual information estimation, gain empirical improvements in unsupervised representation learning, and beat the current state-of-the-art in knowledge distillation over 10 out of 13 tasks.


#17
Self-Supervised Relationship Probing

Jiuxiang Gu · Jason Kuen · Shafiq Joty · Jianfei Cai · Vlad I. Morariu · Handong Zhao · Tong Sun

Structured representations of images that model visual relationships are beneficial for many vision and vision-language applications. However, current human-annotated visual relationship datasets suffer from the long-tailed predicate distribution problem which limits the potential of visual relationship models. In this work, we introduce a self-supervised method that implicitly learns the visual relationships without relying on any ground-truth visual relationship annotations. Our method relies on 1) intra- and inter-modality encodings to respectively model relationships within each modality separately and jointly, and 2) relationship probing, which seeks to discover the graph structure within each modality. By leveraging masked language modeling, contrastive learning, and dependency tree distances for self-supervision, our method learns better object features as well as implicit visual relationships. We verify the effectiveness of our proposed method on various vision-language tasks that benefit from improved visual relationship understanding.


#18
Debiased Contrastive Learning

Ching-Yao Chuang · Joshua Robinson · Yen-Chen Lin · Antonio Torralba · Stefanie Jegelka

A prominent technique for self-supervised representation learning has been to contrast semantically similar and dissimilar pairs of samples. Without access to labels, dissimilar (negative) points are typically taken to be randomly sampled datapoints, implicitly accepting that these points may, in reality, actually have the same label. Perhaps unsurprisingly, we observe that sampling negative examples from truly different labels improves performance, in a synthetic setting where labels are available. Motivated by this observation, we develop a debiased contrastive objective that corrects for the sampling of same-label datapoints, even without knowledge of the true labels. Empirically, the proposed objective consistently outperforms the state-of-the-art for representation learning in vision, language, and reinforcement learning benchmarks. Theoretically, we establish generalization bounds for the downstream classification task.


#19
The Autoencoding Variational Autoencoder

Taylan Cemgil · Sumedh Ghaisas · Krishnamurthy Dvijotham · Sven Gowal · Pushmeet Kohli

Does a Variational AutoEncoder (VAE) consistently encode typical samples generated from its decoder? This paper shows that the perhaps surprising answer to this question is `No'; a (nominally trained) VAE does not necessarily amortize inference for typical samples that it is capable of generating. We study the implications of this behaviour on the learned representations and also the consequences of fixing it by introducing a notion of self consistency. Our approach hinges on an alternative construction of the variational approximation distribution to the true posterior of an extended VAE model with a Markov chain alternating between the encoder and the decoder. The method can be used to train a VAE model from scratch or given an already trained VAE, it can be run as a post processing step in an entirely self supervised way without access to the original training data. Our experimental analysis reveals that encoders trained with our self-consistency approach lead to representations that are robust (insensitive) to perturbations in the input introduced by adversarial attacks. We provide experimental results on the ColorMnist and CelebA benchmark datasets that quantify the properties of the learned representations and compare the approach with a baseline that is specifically trained for the desired property.


#20
Learning Diverse and Discriminative Representations via the Principle of Maximal Coding Rate Reduction

Yaodong Yu · Kwan Ho Ryan Chan · Chong You · Chaobing Song · Yi Ma

To learn intrinsic low-dimensional structures from high-dimensional data that most discriminate between classes, we propose the principle of {\em Maximal Coding Rate Reduction} ($\text{MCR}^2$), an information-theoretic measure that maximizes the coding rate difference between the whole dataset and the sum of each individual class. We clarify its relationships with most existing frameworks such as cross-entropy, information bottleneck, information gain, contractive and contrastive learning, and provide theoretical guarantees for learning diverse and discriminative features. The coding rate can be accurately computed from finite samples of degenerate subspace-like distributions and can learn intrinsic representations in supervised, self-supervised, and unsupervised settings in a unified manner. Empirically, the representations learned using this principle alone are significantly more robust to label corruptions in classification than those using cross-entropy, and can lead to state-of-the-art results in clustering mixed data from self-learned invariant features.


#21
Unsupervised Data Augmentation for Consistency Training

Qizhe Xie · Zihang Dai · Eduard Hovy · Thang Luong · Quoc V Le

Semi-supervised learning lately has shown much promise in improving deep learning models when labeled data is scarce. Common among recent approaches is the use of consistency training on a large amount of unlabeled data to constrain model predictions to be invariant to input noise. In this work, we present a new perspective on how to effectively noise unlabeled examples and argue that the quality of noising, specifically those produced by advanced data augmentation methods, plays a crucial role in semi-supervised learning. By substituting simple noising operations with advanced data augmentation methods such as RandAugment and back-translation, our method brings substantial improvements across six language and three vision tasks under the same consistency training framework. On the IMDb text classification dataset, with only 20 labeled examples, our method achieves an error rate of 4.20, outperforming the state-of-the-art model trained on 25,000 labeled examples. On a standard semi-supervised learning benchmark, CIFAR-10, our method outperforms all previous approaches and achieves an error rate of 5.43 with only 250 examples. Our method also combines well with transfer learning, e.g., when finetuning from BERT, and yields improvements in high-data regime, such as ImageNet, whether when there is only 10% labeled data or when a full labeled set with 1.3M extra unlabeled examples is used. Code is available at https://github.com/google-research/uda.


#22
Temporal Positive-unlabeled Learning for Biomedical Hypothesis Generation via Risk Estimation

Uchenna Akujuobi · Jun Chen · Mohamed Elhoseiny · Michael Spranger · Xiangliang Zhang

Understanding the relationships between biomedical terms like viruses, drugs, and symptoms is essential in the fight against diseases. Many attempts have been made to introduce the use of machine learning to the scientific process of hypothesis generation (HG), which refers to the discovery of meaningful implicit connections between biomedical terms. However, most existing methods fail to truly capture the temporal dynamics of scientific term relations and also assume unobserved connections to be irrelevant (i.e., in a positive-negative (PN) learning setting). To break these limits, we formulate this HG problem as future connectivity prediction task on a dynamic attributed graph via positive-unlabeled (PU) learning. Then, the key is to capture the temporal evolution of node pair (term pair) relations from just the positive and unlabeled data. We propose a variational inference model to estimate the positive prior, and incorporate it in the learning of node pair embeddings, which are then used for link prediction. Experiment results on real-world biomedical term relationship datasets and case study analyses on a COVID-19 dataset validate the effectiveness of the proposed model.


#23
Hard Negative Mixing for Contrastive Learning

Yannis Kalantidis · Mert Bulent Sariyildiz · Noe Pion · Philippe Weinzaepfel · Diane Larlus

Contrastive learning has become a key component of self-supervised learning approaches for computer vision. By learning to embed two augmented versions of the same image close to each other and to push the embeddings of different images apart, one can train highly transferable visual representations. As revealed by recent studies, heavy data augmentation and large sets of negatives are both crucial in learning such representations. At the same time, data mixing strategies, either at the image or the feature level, improve both supervised and semi-supervised learning by synthesizing novel examples, forcing networks to learn more robust features. In this paper, we argue that an important aspect of contrastive learning, i.e. the effect of hard negatives, has so far been neglected. To get more meaningful negative samples, current top contrastive self-supervised learning approaches either substantially increase the batch sizes, or keep very large memory banks; increasing memory requirements, however, leads to diminishing returns in terms of performance. We therefore start by delving deeper into a top-performing framework and show evidence that harder negatives are needed to facilitate better and faster learning. Based on these observations, and motivated by the success of data mixing, we propose hard negative mixing strategies at the feature level, that can be computed on-the-fly with a minimal computational overhead. We exhaustively ablate our approach on linear classification, object detection, and instance segmentation and show that employing our hard negative mixing procedure improves the quality of visual representations learned by a state-of-the-art self-supervised learning method.


#24
Parametric Instance Classification for Unsupervised Visual Feature learning

Yue Cao · Zhenda Xie · Bin Liu · Yutong Lin · Zheng Zhang · Han Hu

This paper presents parametric instance classification (PIC) for unsupervised visual feature learning. Unlike the state-of-the-art approaches which do instance discrimination in a dual-branch non-parametric fashion, PIC directly performs a one-branch parametric instance classification, revealing a simple framework similar to supervised classification and without the need to address the information leakage issue. We show that the simple PIC framework can be as effective as the state-of-the-art approaches, i.e. SimCLR and MoCo v2, by adapting several common component settings used in the state-of-the-art approaches. We also propose two novel techniques to further improve effectiveness and practicality of PIC: 1) a sliding-window data scheduler, instead of the previous epoch-based data scheduler, which addresses the extremely infrequent instance visiting issue in PIC and improves the effectiveness; 2) a negative sampling and weight update correction approach to reduce the training time and GPU memory consumption, which also enables application of PIC to almost unlimited training images. We hope that the PIC framework can serve as a simple baseline to facilitate future study. The code and network configurations are available at \url{https://github.com/bl0/PIC}.


#25
VIME: Extending the Success of Self- and Semi-supervised Learning to Tabular Domain

Jinsung Yoon · Yao Zhang · James Jordon · Mihaela van der Schaar

Self- and semi-supervised learning frameworks have made significant progress in training machine learning models with limited labeled data in image and language domains. These methods heavily rely on the unique structure in the domain datasets (such as spatial relationships in images or semantic relationships in language). They are not adaptable to general tabular data which does not have the same explicit structure as image and language data. In this paper, we fill this gap by proposing novel self- and semi-supervised learning frameworks for tabular data, which we refer to collectively as VIME (Value Imputation and Mask Estimation). We create a novel pretext task of estimating mask vectors from corrupted tabular data in addition to the reconstruction pretext task for self-supervised learning. We also introduce a novel tabular data augmentation method for self- and semi-supervised learning frameworks. In experiments, we evaluate the proposed framework in multiple tabular datasets from various application domains, such as genomics and clinical data. VIME exceeds state-of-the-art performance in comparison to the existing baseline methods.


#26
Unsupervised Representation Learning by Invariance Propagation

Feng Wang · Huaping Liu · Di Guo · Sun Fuchun

Unsupervised learning methods based on contrastive learning have drawn increasing attention and achieved promising results. Most of them aim to learn representations invariant to instance-level variations, which are provided by different views of the same instance. In this paper, we propose Invariance Propagation to focus on learning representations invariant to category-level variations, which are provided by different instances from the same category. Our method recursively discovers semantically consistent samples residing in the same high-density regions in representation space. We demonstrate a hard sampling strategy to concentrate on maximizing the agreement between the anchor sample and its hard positive samples, which provide more intra-class variations to help capture more abstract invariance. As a result, with a ResNet-50 as the backbone, our method achieves 71.3% top-1 accuracy on ImageNet linear classification and 78.2% top-5 accuracy fine-tuning on only 1% labels, surpassing previous results. We also achieve state-of-the-art performance on other downstream tasks, including linear classification on Places205 and Pascal VOC, and transfer learning on small scale datasets.


#27
Joint Contrastive Learning with Infinite Possibilities

Qi Cai · Yu Wang · Yingwei Pan · Ting Yao · Tao Mei

This paper explores useful modifications of the recent development in contrastive learning via novel probabilistic modeling. We derive a particular form of contrastive loss named Joint Contrastive Learning (JCL). JCL implicitly involves the simultaneous learning of an infinite number of query-key pairs, which poses tighter constraints when searching for invariant features. We derive an upper bound on this formulation that allows analytical solutions in an end-to-end training manner. While JCL is practically effective in numerous computer vision applications, we also theoretically unveil the certain mechanisms that govern the behavior of JCL. We demonstrate that the proposed formulation harbors an innate agency that strongly favors similarity within each instance-specific class, and therefore remains advantageous when searching for discriminative features among distinct instances. We evaluate these proposals on multiple benchmarks, demonstrating considerable improvements over existing algorithms. Code is publicly available at: https://github.com/caiqi/Joint-Contrastive-Learning.


#28
Variational Inference for Graph Convolutional Networks in the Absence of Graph Data and Adversarial Settings

Pantelis Elinas · Edwin Bonilla · Louis Tiao

We propose a framework that lifts the capabilities of graph convolutional networks (GCNs) to scenarios where no input graph is given and increases their robustness to adversarial attacks. We formulate a joint probabilistic model that considers a prior distribution over graphs along with a GCN-based likelihood and develop a stochastic variational inference algorithm to estimate the graph posterior and the GCN parameters jointly. To address the problem of propagating gradients through latent variables drawn from discrete distributions, we use their continuous relaxations known as Concrete distributions. We show that, on real datasets, our approach can outperform state-of-the-art Bayesian and non-Bayesian graph neural network algorithms on the task of semi-supervised classification in the absence of graph data and when the network structure is subjected to adversarial perturbations.


#29
Restoring Negative Information in Few-Shot Object Detection

Yukuan Yang · Fangyun Wei · Miaojing Shi · Guoqi Li

Few-shot learning has recently emerged as a new challenge in the deep learning field: unlike conventional methods that train the deep neural networks (DNNs) with a large number of labeled data, it asks for the generalization of DNNs on new classes with few annotated samples. Recent advances in few-shot learning mainly focus on image classification while in this paper we focus on object detection. The initial explorations in few-shot object detection tend to simulate a classification scenario by using the positive proposals in images with respect to certain object class while discarding the negative proposals of that class. Negatives, especially hard negatives, however, are essential to the embedding space learning in few-shot object detection. In this paper, we restore the negative information in few-shot object detection by introducing a new negative- and positive-representative based metric learning framework and a new inference scheme with negative and positive representatives. We build our work on a recent few-shot pipeline RepMet with several new modules to encode negative information for both training and testing. Extensive experiments on ImageNet-LOC and PASCAL VOC show our method substantially improves the state-of-the-art few-shot object detection solutions. Our code is available at https://github.com/yang-yk/NP-RepMet.


#30
One-sample Guided Object Representation Disassembling

Zunlei Feng · Yongming He · Xinchao Wang · Xin Gao · Jie Lei · Cheng Jin · Mingli Song

The ability to disassemble the features of objects and background is crucial for many machine learning tasks, including image classification, image editing, visual concepts learning, and so on. However, existing (semi-)supervised methods all need a large amount of annotated samples, while unsupervised methods can't handle real-world images with complicated backgrounds. In this paper, we introduce the One-sample Guided Object Representation Disassembling (One-GORD) method, which only requires one annotated sample for each object category to learn disassembled object representation from unannotated images. For the annotated one-sample, we first adopt some data augmentation strategies to generate some synthetic samples, which can guide the disassembling of the object features and background features. For the unannotated images, two self-supervised mechanisms: dual-swapping and fuzzy classification are introduced to disassemble object features from the background with the guidance of annotated one-sample. What's more, we devise two metrics to evaluate the disassembling performance from the perspective of representation and image, respectively. Experiments demonstrate that the One-GORD achieves competitive dissembling performance and can handle natural scenes with complicated backgrounds.


#31
Few-shot Visual Reasoning with Meta-Analogical Contrastive Learning

Youngsung Kim · Jinwoo Shin · Eunho Yang · Sung Ju Hwang

While humans can solve a visual puzzle that requires logical reasoning by observing only few samples, it would require training over a large number of samples for state-of-the-art deep reasoning models to obtain similar performance on the same task. In this work, we propose to solve such a few-shot (or low-shot) abstract visual reasoning problem by resorting to \emph{analogical reasoning}, which is a unique human ability to identify structural or relational similarity between two sets. Specifically, we construct analogical and non-analogical training pairs of two different problem instances, e.g., the latter is created by perturbing or shuffling the original (former) problem. Then, we extract the structural relations among elements in both domains in a pair by enforcing analogical ones to be as similar as possible, while minimizing similarities between non-analogical ones. This analogical contrastive learning allows to effectively learn the relational representations of given abstract reasoning tasks. We validate our method on RAVEN dataset, on which it outperforms state-of-the-art method, with larger gains when the training data is scarce. We further meta-learn our analogical contrastive learning model over the same tasks with diverse attributes, and show that it generalizes to the same visual reasoning problem with unseen attributes.


#32
Latent Dynamic Factor Analysis of High-Dimensional Neural Recordings

Heejong Bong · Zongge Liu · Zhao Ren · Matthew Smith · Valerie Ventura · Robert E Kass

High-dimensional neural recordings across multiple brain regions can be used to establish functional connectivity with good spatial and temporal resolution. We designed and implemented a novel method, Latent Dynamic Factor Analysis of High-dimensional time series (LDFA-H), which combines (a) a new approach to estimating the covariance structure among high-dimensional time series (for the observed variables) and (b) a new extension of probabilistic CCA to dynamic time series (for the latent variables). Our interest is in the cross-correlations among the latent variables which, in neural recordings, may capture the flow of information from one brain region to another. Simulations show that LDFA-H outperforms existing methods in the sense that it captures target factors even when within-region correlation due to noise dominates cross-region correlation. We applied our method to local field potential (LFP) recordings from 192 electrodes in Prefrontal Cortex (PFC) and visual area V4 during a memory-guided saccade task. The results capture time-varying lead-lag dependencies between PFC and V4, and display the associated spatial distribution of the signals.


#33
Heavy-tailed Representations, Text Polarity Classification & Data Augmentation

Hamid Jalalzai · Pierre Colombo · Chloé Clavel · Eric Gaussier · Giovanna Varni · Emmanuel Vignon · Anne Sabourin

The dominant approaches to text representation in natural language rely on learning embeddings on massive corpora which have convenient properties such as compositionality and distance preservation. In this paper, we develop a novel method to learn a heavy-tailed embedding with desirable regularity properties regarding the distributional tails, which allows to analyze the points far away from the distribution bulk using the framework of multivariate extreme value theory. In particular, a classifier dedicated to the tails of the proposed embedding is obtained which exhibits a scale invariance property exploited in a novel text generation method for label preserving dataset augmentation. Experiments on synthetic and real text data show the relevance of the proposed framework and confirm that this method generates meaningful sentences with controllable attribute, e.g. positive or negative sentiments.


#34
Hierarchical Poset Decoding for Compositional Generalization in Language

Yinuo Guo · Zeqi Lin · Jian-Guang Lou · Dongmei Zhang

We formalize human language understanding as a structured prediction task where the output is a partially ordered set (poset). Current encoder-decoder architectures do not take the poset structure of semantics into account properly, thus suffering from poor compositional generalization ability. In this paper, we propose a novel hierarchical poset decoding paradigm for compositional generalization in language. Intuitively: (1) the proposed paradigm enforces partial permutation invariance in semantics, thus avoiding overfitting to bias ordering information; (2) the hierarchical mechanism allows to capture high-level structures of posets. We evaluate our proposed decoder on Compositional Freebase Questions (CFQ), a large and realistic natural language question answering dataset that is specifically designed to measure compositional generalization. Results show that it outperforms current decoders.


#35
Strongly Incremental Constituency Parsing with Graph Neural Networks

Kaiyu Yang · Jia Deng

Parsing sentences into syntax trees can benefit downstream applications in NLP. Transition-based parsers build trees by executing actions in a state transition system. They are computationally efficient, and can leverage machine learning to predict actions based on partial trees. However, existing transition-based parsers are predominantly based on the shift-reduce transition system, which does not align with how humans are known to parse sentences. Psycholinguistic research suggests that human parsing is strongly incremental—humans grow a single parse tree by adding exactly one token at each step. In this paper, we propose a novel transition system called attach-juxtapose. It is strongly incremental; it represents a partial sentence using a single tree; each action adds exactly one token into the partial tree. Based on our transition system, we develop a strongly incremental parser. At each step, it encodes the partial tree using a graph neural network and predicts an action. We evaluate our parser on Penn Treebank (PTB) and Chinese Treebank (CTB). On PTB, it outperforms existing parsers trained with only constituency trees; and it performs on par with state-of-the-art parsers that use dependency trees as additional training data. On CTB, our parser establishes a new state of the art. Code is available at https://github.com/princeton-vl/attach-juxtapose-parser.


#36
A Simple Language Model for Task-Oriented Dialogue

Ehsan Hosseini-Asl · Bryan McCann · Chien-Sheng Wu · Semih Yavuz · Richard Socher

Task-oriented dialogue is often decomposed into three tasks: understanding user input, deciding actions, and generating a response. While such decomposition might suggest a dedicated model for each sub-task, we find a simple, unified approach leads to state-of-the-art performance on the MultiWOZ dataset. SimpleTOD is a simple approach to task-oriented dialogue that uses a single, causal language model trained on all sub-tasks recast as a single sequence prediction problem. This allows SimpleTOD to fully leverage transfer learning from pre-trained, open domain, causal language models such as GPT-2. SimpleTOD improves over the prior state-of-the-art in joint goal accuracy for dialogue state tracking, and our analysis reveals robustness to noisy annotations in this setting. SimpleTOD also improves the main metrics used to evaluate action decisions and response generation in an end-to-end setting: inform rate by 8.1 points, success rate by 9.7 points, and combined score by 7.2 points.


#37
Learning Dynamic Belief Graphs to Generalize on Text-Based Games

Ashutosh Adhikari · Xingdi Yuan · Marc-Alexandre Côté · Mikuláš Zelinka · Marc-Antoine Rondeau · Romain Laroche · Pascal Poupart · Jian Tang · Adam Trischler · Will Hamilton

Playing text-based games requires skills in processing natural language and sequential decision making. Achieving human-level performance on text-based games remains an open challenge, and prior research has largely relied on hand-crafted structured representations and heuristics. In this work, we investigate how an agent can plan and generalize in text-based games using graph-structured representations learned end-to-end from raw text. We propose a novel graph-aided transformer agent (GATA) that infers and updates latent belief graphs during planning to enable effective action selection by capturing the underlying game dynamics. GATA is trained using a combination of reinforcement and self-supervised learning. Our work demonstrates that the learned graph-based representations help agents converge to better policies than their text-only counterparts and facilitate effective generalization across game configurations. Experiments on 500+ unique games from the TextWorld suite show that our best agent outperforms text-based baselines by an average of 24.2%.


#38
Incorporating Pragmatic Reasoning Communication into Emergent Language

Yipeng Kang · Tonghan Wang · Gerard de Melo

Emergentism and pragmatics are two research fields that study the dynamics of linguistic communication along quite different timescales and intelligence levels. From the perspective of multi-agent reinforcement learning, they correspond to stochastic games with reinforcement training and stage games with opponent awareness, respectively. Given that their combination has been explored in linguistics, in this work, we combine computational models of short-term mutual reasoning-based pragmatics with long-term language emergentism. We explore this for agent communication in two settings, referential games and Starcraft II, assessing the relative merits of different kinds of mutual reasoning pragmatics models both empirically and theoretically. Our results shed light on their importance for making inroads towards getting more natural, accurate, robust, fine-grained, and succinct utterances.


#39
Learning Strategic Network Emergence Games

Rakshit Trivedi · Hongyuan Zha

Real-world networks, especially the ones that emerge due to actions of animate agents (e.g. humans, animals), are the result of underlying strategic mechanisms aimed at maximizing individual or collective benefits. Learning approaches built to capture these strategic insights would gain interpretability and flexibility benefits that are required to generalize beyond observations. To this end, we consider a game-theoretic formalism of network emergence that accounts for the underlying strategic mechanisms and take it to the observed data. We propose MINE (Multi-agent Inverse models of Network Emergence mechanism), a new learning framework that solves Markov-Perfect network emergence games using multi-agent inverse reinforcement learning. MINE jointly discovers agents' strategy profiles in the form of network emergence policy and the latent payoff mechanism in the form of learned reward function. In the experiments, we demonstrate that MINE learns versatile payoff mechanisms that: highly correlates with the ground truth for a synthetic case; can be used to analyze the observed network structure; and enable effective transfer in specific settings. Further, we show that the network emergence game as a learned model supports meaningful strategic predictions, thereby signifying its applicability to a variety of network analysis tasks.


#40
Fighting Copycat Agents in Behavioral Cloning from Observation Histories

Chuan Wen · Jierui Lin · Trevor Darrell · Dinesh Jayaraman · Yang Gao

Imitation learning trains policies to map from input observations to the actions that an expert would choose. In this setting, distribution shift frequently exacerbates the effect of misattributing expert actions to nuisance correlates among the observed variables. We observe that a common instance of this causal confusion occurs in partially observed settings when expert actions are strongly correlated over time: the imitator learns to cheat by predicting the expert's previous action, rather than the next action. To combat this "copycat problem", we propose an adversarial approach to learn a feature representation that removes excess information about the previous expert action nuisance correlate, while retaining the information necessary to predict the next action. In our experiments, our approach improves performance significantly across a variety of partially observed imitation learning tasks.


#41
Attention-Gated Brain Propagation: How the brain can implement reward-based error backpropagation

Isabella Pozzi · Sander Bohte · Pieter Roelfsema

Much recent work has focused on biologically plausible variants of supervised learning algorithms. However, there is no teacher in the motor cortex that instructs the motor neurons and learning in the brain depends on reward and punishment. We demonstrate a biologically plausible reinforcement learning scheme for deep networks with an arbitrary number of layers. The network chooses an action by selecting a unit in the output layer and uses feedback connections to assign credit to the units in successively lower layers that are responsible for this action. After the choice, the network receives reinforcement and there is no teacher correcting the errors. We show how the new learning scheme – Attention-Gated Brain Propagation (BrainProp) – is mathematically equivalent to error backpropagation, for one output unit at a time. We demonstrate successful learning of deep fully connected, convolutional and locally connected networks on classical and hard image-classification benchmarks; MNIST, CIFAR10, CIFAR100 and Tiny ImageNet. BrainProp achieves an accuracy that is equivalent to that of standard error-backpropagation, and better than state-of-the-art biologically inspired learning schemes. The trial-and-error nature of learning is associated with limited additional training time so that BrainProp is a factor of 1-3.5 times slower. Our results thereby provide new insights into how deep learning may be implemented in the brain.


#42
Can the Brain Do Backpropagation? --- Exact Implementation of Backpropagation in Predictive Coding Networks

Yuhang Song · Thomas Lukasiewicz · Zhenghua Xu · Rafal Bogacz

Backpropagation (BP) has been the most successful algorithm used to train artificial neural networks. However, there are several gaps between BP and learning in biologically plausible neuronal networks of the brain (learning in the brain, or simply BL, for short), in particular, (1) it has been unclear to date, if BP can be implemented exactly via BL, (2) there is a lack of local plasticity in BP, i.e., weight updates require information that is not locally available, while BL utilizes only locally available information, and (3)~there is a lack of autonomy in BP, i.e., some external control over the neural network is required (e.g., switching between prediction and learning stages requires changes to dynamics and synaptic plasticity rules), while BL works fully autonomously. Bridging such gaps, i.e., understanding how BP can be approximated by BL, has been of major interest in both neuroscience and machine learning. Despite tremendous efforts, however, no previous model has bridged the gaps at a degree of demonstrating an equivalence to BP, instead, only approximations to BP have been shown. Here, we present for the first time a framework within BL that bridges the above crucial gaps. We propose a BL model that (1) produces \emph{exactly the same} updates of the neural weights as~BP, while (2)~employing local plasticity, i.e., all neurons perform only local computations, done simultaneously. We then modify it to an alternative BL model that (3) also works fully autonomously. Overall, our work provides important evidence for the debate on the long-disputed question whether the brain can perform~BP.


#43
Demixed shared component analysis of neural population data from multiple brain areas

Yu Takagi · Steven Kennerley · Jun-ichiro Hirayama · Laurence T Hunt

Recent advances in neuroscience data acquisition allow for the simultaneous recording of large populations of neurons across multiple brain areas while subjects perform complex cognitive tasks. Interpreting these data requires us to index how task-relevant information is shared across brain regions, but this is often confounded by the mixing of different task parameters at the single neuron level. Here, inspired by a method developed for a single brain area, we introduce a new technique for demixing variables across multiple brain areas, called demixed shared component analysis (dSCA). dSCA decomposes population activity into a few components, such that the shared components capture the maximum amount of shared information across brain regions while also depending on relevant task parameters. This yields interpretable components that express which variables are shared between different brain regions and when this information is shared across time. To illustrate our method, we reanalyze two datasets recorded during decision-making tasks in rodents and macaques. We find that dSCA provides new insights into the shared computation between different brain areas in these datasets, relating to several different aspects of decision formation.


#44
Neural encoding with visual attention

Meenakshi Khosla · Gia Ngo · Keith Jamison · Amy Kuceyeski · Mert Sabuncu

Visual perception is critically influenced by the focus of attention. Due to limited resources, it is well known that neural representations are biased in favor of attended locations. Using concurrent eye-tracking and functional Magnetic Resonance Imaging (fMRI) recordings from a large cohort of human subjects watching movies, we first demonstrate that leveraging gaze information, in the form of attentional masking, can significantly improve brain response prediction accuracy in a neural encoding model. Next, we propose a novel approach to neural encoding by including a trainable soft-attention module. Using our new approach, we demonstrate that it is possible to learn visual attention policies by end-to-end learning merely on fMRI response data, and without relying on any eye-tracking. Interestingly, we find that attention locations estimated by the model on independent data agree well with the corresponding eye fixation patterns, despite no explicit supervision to do so. Together, these findings suggest that attention modules can be instrumental in neural encoding models of visual stimuli.


#45
On Numerosity of Deep Neural Networks

Xi Zhang · Xiaolin Wu

Recently, a provocative claim was published that number sense spontaneously emerges in a deep neural network trained merely for visual object recognition. This has, if true, far reaching significance to the fields of machine learning and cognitive science alike. In this paper, we prove the above claim to be unfortunately incorrect. The statistical analysis to support the claim is flawed in that the sample set used to identify number-aware neurons is too small, compared to the huge number of neurons in the object recognition network. By this flawed analysis one could mistakenly identify number-sensing neurons in any randomly initialized deep neural networks that are not trained at all. With the above critique we ask the question what if a deep convolutional neural network is carefully trained for numerosity? Our findings are mixed. Even after being trained with number-depicting images, the deep learning approach still has difficulties to acquire the abstract concept of numbers, a cognitive task that preschoolers perform with ease. But on the other hand, we do find some encouraging evidences suggesting that deep neural networks are more robust to distribution shift for small numbers than for large numbers.


#46
Compact task representations as a normative model for higher-order brain activity

Severin Berger · Christian Machens

Higher-order brain areas such as the frontal cortices are considered essential for the flexible solution of tasks. However, the precise computational role of these areas is still debated. Indeed, even for the simplest of tasks, we cannot really explain how the measured brain activity, which evolves over time in complicated ways, relates to the task structure. Here, we follow a normative approach, based on integrating the principle of efficient coding with the framework of Markov decision processes (MDP). More specifically, we focus on MDPs whose state is based on action-observation histories, and we show how to compress the state space such that unnecessary redundancy is eliminated, while task-relevant information is preserved. We show that the efficiency of a state space representation depends on the (long-term) behavioural goal of the agent, and we distinguish between model-based and habitual agents. We apply our approach to simple tasks that require short-term memory, and we show that the efficient state space representations reproduce the key dynamical features of recorded neural activity in frontal areas (such as ramping, sequentiality, persistence). If we additionally assume that neural systems are subject to accuracy-cost tradeoffs, we find a surprising match to neural data on a population level.


#47
Using noise to probe recurrent neural network structure and prune synapses

Eli Moore · Rishidev Chaudhuri

Many networks in the brain are sparsely connected, and the brain eliminates synapses during development and learning. How could the brain decide which synapses to prune? In a recurrent network, determining the importance of a synapse between two neurons is a difficult computational problem, depending on the role that both neurons play and on all possible pathways of information flow between them. Noise is ubiquitous in neural systems, and often considered an irritant to be overcome. Here we suggest that noise could play a functional role in synaptic pruning, allowing the brain to probe network structure and determine which synapses are redundant. We construct a simple, local, unsupervised plasticity rule that either strengthens or prunes synapses using only synaptic weight and the noise-driven covariance of the neighboring neurons. For a subset of linear and rectified-linear networks, we prove that this rule preserves the spectrum of the original matrix and hence preserves network dynamics even when the fraction of pruned synapses asymptotically approaches 1. The plasticity rule is biologically-plausible and may suggest a new role for noise in neural computation.


#48
An Imitation from Observation Approach to Transfer Learning with Dynamics Mismatch

Siddharth Desai · Ishan Durugkar · Haresh Karnan · Garrett Warnell · Josiah Hanna · Peter Stone

We examine the problem of transferring a policy learned in a source environment to a target environment with different dynamics, particularly in the case where it is critical to reduce the amount of interaction with the target environment during learning. This problem is particularly important in sim-to-real transfer because simulators inevitably model real-world dynamics imperfectly. In this paper, we show that one existing solution to this transfer problem-- grounded action transformation --is closely related to the problem of imitation from observation (IfO): learning behaviors that mimic the observations of behavior demonstrations. After establishing this relationship, we hypothesize that recent state-of-the-art approaches from the IfO literature can be effectively repurposed for grounded transfer learning. To validate our hypothesis we derive a new algorithm -- generative adversarial reinforced action transformation (GARAT) -- based on adversarial imitation from observation techniques. We run experiments in several domains with mismatched dynamics, and find that agents trained with GARAT achieve higher returns in the target environment compared to existing black-box transfer methods.


#49
Outstanding Paper
Language Models are Few-Shot Learners

Tom B Brown · Benjamin Mann · Nick Ryder · Melanie Subbiah · Jared Kaplan · Prafulla Dhariwal · Arvind Neelakantan · Pranav Shyam · Girish Sastry · Amanda Askell · Sandhini Agarwal · Ariel Herbert-Voss · Gretchen M Krueger · Tom Henighan · Rewon Child · Aditya Ramesh · Daniel Ziegler · Jeffrey Wu · Clemens Winter · Chris Hesse · Mark Chen · Eric Sigler · Mateusz Litwin · Scott Gray · Benjamin Chess · Jack Clark · Christopher Berner · Sam McCandlish · Alec Radford · Ilya Sutskever · Dario Amodei

We demonstrate that scaling up language models greatly improves task-agnostic, few-shot performance, sometimes even becoming competitive with prior state-of-the-art fine-tuning approaches. Specifically, we train GPT-3, an autoregressive language model with 175 billion parameters, 10x more than any previous non-sparse language model, and test its performance in the few-shot setting. For all tasks, GPT-3 is applied without any gradient updates or fine-tuning, with tasks and few-shot demonstrations specified purely via text interaction with the model. GPT-3 achieves strong performance on many NLP datasets, including translation, question-answering, and cloze tasks. We also identify some datasets where GPT-3's few-shot learning still struggles, as well as some datasets where GPT-3 faces methodological issues related to training on large web corpora.


#50
Incorporating BERT into Parallel Sequence Decoding with Adapters

Junliang Guo · Zhirui Zhang · Linli Xu · Hao-Ran Wei · Boxing Chen · Enhong Chen

While large scale pre-trained language models such as BERT have achieved great success on various natural language understanding tasks, how to efficiently and effectively incorporate them into sequence-to-sequence models and the corresponding text generation tasks remains a non-trivial problem. In this paper, we propose to address this problem by taking two different BERT models as the encoder and decoder respectively, and fine-tuning them by introducing simple and lightweight adapter modules, which are inserted between BERT layers and tuned on the task-specific dataset. In this way, we obtain a flexible and efficient model which is able to jointly leverage the information contained in the source-side and target-side BERT models, while bypassing the catastrophic forgetting problem. Each component in the framework can be considered as a plug-in unit, making the framework flexible and task agnostic. Our framework is based on a parallel sequence decoding algorithm named Mask-Predict considering the bi-directional and conditional independent nature of BERT, and can be adapted to traditional autoregressive decoding easily. We conduct extensive experiments on neural machine translation tasks where the proposed method consistently outperforms autoregressive baselines while reducing the inference latency by half, and achieves $36.49$/$33.57$ BLEU scores on IWSLT14 German-English/WMT14 German-English translation. When adapted to autoregressive decoding, the proposed method achieves $30.60$/$43.56$ BLEU scores on WMT14 English-German/English-French translation, on par with the state-of-the-art baseline models.


#51
CogLTX: Applying BERT to Long Texts

Ming Ding · Chang Zhou · Hongxia Yang · Jie Tang

BERTs are incapable of processing long texts due to its quadratically increasing memory and time consumption. The straightforward thoughts to address this problem, such as slicing the text by a sliding window or simplifying transformers, suffer from insufficient long-range attentions or need customized CUDA kernels. The limited text length of BERT reminds us the limited capacity (5∼ 9 chunks) of the working memory of humans – then how do human beings Cognize Long TeXts? Founded on the cognitive theory stemming from Baddeley, our CogLTX framework identifies key sentences by training a judge model, concatenates them for reasoning and enables multi-step reasoning via rehearsal and decay. Since relevance annotations are usually unavailable, we propose to use treatment experiments to create supervision. As a general algorithm, CogLTX outperforms or gets comparable results to SOTA models on NewsQA, HotpotQA, multi-class and multi-label long-text classification tasks with memory overheads independent of the text length.


#52
MPNet: Masked and Permuted Pre-training for Language Understanding

Kaitao Song · Xu Tan · Tao Qin · Jianfeng Lu · Tie-Yan Liu

BERT adopts masked language modeling (MLM) for pre-training and is one of the most successful pre-training models. Since BERT neglects dependency among predicted tokens, XLNet introduces permuted language modeling (PLM) for pre-training to address this problem. However, XLNet does not leverage the full position information of a sentence and thus suffers from position discrepancy between pre-training and fine-tuning. In this paper, we propose MPNet, a novel pre-training method that inherits the advantages of BERT and XLNet and avoids their limitations. MPNet leverages the dependency among predicted tokens through permuted language modeling (vs. MLM in BERT), and takes auxiliary position information as input to make the model see a full sentence and thus reducing the position discrepancy (vs. PLM in XLNet). We pre-train MPNet on a large-scale dataset (over 160GB text corpora) and fine-tune on a variety of down-streaming tasks (GLUE, SQuAD, etc). Experimental results show that MPNet outperforms MLM and PLM by a large margin, and achieves better results on these tasks compared with previous state-of-the-art pre-trained methods (e.g., BERT, XLNet, RoBERTa) under the same model setting. We attach the code in the supplemental materials.


#53
MiniLM: Deep Self-Attention Distillation for Task-Agnostic Compression of Pre-Trained Transformers

Wenhui Wang · Furu Wei · Li Dong · Hangbo Bao · Nan Yang · Ming Zhou

Pre-trained language models (e.g., BERT (Devlin et al., 2018) and its variants) have achieved remarkable success in varieties of NLP tasks. However, these models usually consist of hundreds of millions of parameters which brings challenges for fine-tuning and online serving in real-life applications due to latency and capacity constraints. In this work, we present a simple and effective approach to compress large Transformer (Vaswani et al., 2017) based pre-trained models, termed as deep self-attention distillation. The small model (student) is trained by deeply mimicking the self-attention module, which plays a vital role in Transformer networks, of the large model (teacher). Specifically, we propose distilling the self-attention module of the last Transformer layer of the teacher, which is effective and flexible for the student. Furthermore, we introduce the scaled dot-product between values in the self-attention module as the new deep self-attention knowledge, in addition to the attention distributions (i.e., the scaled dot-product of queries and keys) that have been used in existing works. Moreover, we show that introducing a teacher assistant (Mirzadeh et al., 2019) also helps the distillation of large pre-trained Transformer models. Experimental results demonstrate that our monolingual model outperforms state-of-the-art baselines in different parameter size of student models. In particular, it retains more than 99% accuracy on SQuAD 2.0 and several GLUE benchmark tasks using 50% of the Transformer parameters and computations of the teacher model. We also obtain competitive results in applying deep self-attention distillation to multilingual pre-trained models.


#54
Towards Neural Programming Interfaces

Zachary Brown · Nathaniel Robinson · David Wingate · Nancy Fulda

It is notoriously difficult to control the behavior of artificial neural networks such as generative neural language models. We recast the problem of controlling natural language generation as that of learning to interface with a pretrained language model, just as Application Programming Interfaces (APIs) control the behavior of programs by altering hyperparameters. In this new paradigm, a specialized neural network (called a Neural Programming Interface or NPI) learns to interface with a pretrained language model by manipulating the hidden activations of the pretrained model to produce desired outputs. Importantly, no permanent changes are made to the weights of the original model, allowing us to re-purpose pretrained models for new tasks without overwriting any aspect of the language model. We also contribute a new data set construction algorithm and GAN-inspired loss function that allows us to train NPI models to control outputs of autoregressive transformers. In experiments against other state-of-the-art approaches, we demonstrate the efficacy of our methods using OpenAI’s GPT-2 model, successfully controlling noun selection, topic aversion, offensive speech filtering, and other aspects of language while largely maintaining the controlled model's fluency under deterministic settings.


#55
Language Through a Prism: A Spectral Approach for Multiscale Language Representations

Alex Tamkin · Dan Jurafsky · Noah Goodman

Language exhibits structure at different scales, ranging from subwords to words, sentences, paragraphs, and documents. To what extent do deep models capture information at these scales, and can we force them to better capture structure across this hierarchy? We approach this question by focusing on individual neurons, analyzing the behavior of their activations at different timescales. We show that signal processing provides a natural framework for separating structure across scales, enabling us to 1) disentangle scale-specific information in existing embeddings and 2) train models to learn more about particular scales. Concretely, we apply spectral filters to the activations of a neuron across an input, producing filtered embeddings that perform well on part of speech tagging (word-level), dialog speech acts classification (utterance-level), or topic classification (document-level), while performing poorly on the other tasks. We also present a prism layer for training models, which uses spectral filters to constrain different neurons to model structure at different scales. Our proposed BERT + Prism model can better predict masked tokens using long-range context and produces multiscale representations that perform better at utterance- and document-level tasks. Our methods are general and readily applicable to other domains besides language, such as images, audio, and video.


#56
ColdGANs: Taming Language GANs with Cautious Sampling Strategies

Thomas Scialom · Paul-Alexis Dray · Sylvain Lamprier · Benjamin Piwowarski · Jacopo Staiano

Training regimes based on Maximum Likelihood Estimation (MLE) suffer from known limitations, often leading to poorly generated text sequences that lack of coherence, factualness, and are prone to repetitions. At the root of these limitations is the mismatch between training and inference, i.e. the so-called exposure bias. Another problem lies in considering only the reference text as correct, while in practice several alternative formulations could be as good.

Generative Adversarial Networks (GANs) could mitigate those limitations. Nonetheless, the discrete nature of text has hindered their application to language generation: the approaches proposed so far, based on Reinforcement Learning, have been shown to under-perform MLE. In this context, the exploration is known to be critical, while surprisingly being under-studied. In this work, we show how the most popular sampling method results in unstable training for language GANs. We propose alternative exploration strategies that we named Cold-GANs. By forcing the sampling to be close to the distribution mode, the learning dynamic becomes smoother.

We report experimental results obtained on three tasks: unconditional text generation, question generation, and abstractive summarization. For the first time, to the best of our knowledge, the proposed language GANs compare favorably to MLE, and obtain improvements over the state-of-the-art on the considered tasks.


#57
ConvBERT: Improving BERT with Span-based Dynamic Convolution

Zi-Hang Jiang · Weihao Yu · Daquan Zhou · Yunpeng Chen · Jiashi Feng · Shuicheng Yan

Pre-trained language models like BERT and its variants have recently achieved impressive performance in various natural language understanding tasks. However, BERT heavily relies on the global self-attention block and thus suffers large memory footprint and computation cost. Although all its attention heads query on the whole input sequence for generating the attention map from a global perspective, we observe some heads only need to learn local dependencies, which means existence of computation redundancy. We therefore propose a novel span-based dynamic convolution to replace these self-attention heads to directly model local dependencies. The novel convolution heads, together with the rest self-attention heads, form a new mixed attention block that is more efficient at both global and local context learning. We equip BERT with this mixed attention design and build a ConvBERT model. Experiments have shown that ConvBERT significantly outperforms BERT and its variants in various downstream tasks, with lower training cost and fewer model parameters. Remarkably, ConvBERTbase model achieves 86.4 GLUE score, 0.7 higher than ELECTRAbase, using less than 1/4 training cost. Code and pre-trained models will be released.


#58
Investigating Gender Bias in Language Models Using Causal Mediation Analysis

Jesse Vig · Sebastian Gehrmann · Yonatan Belinkov · Sharon Qian · Daniel Nevo · Yaron Singer · Stuart Shieber

Many interpretation methods for neural models in natural language processing investigate how information is encoded inside hidden representations. However, these methods can only measure whether the information exists, not whether it is actually used by the model. We propose a methodology grounded in the theory of causal mediation analysis for interpreting which parts of a model are causally implicated in its behavior. The approach enables us to analyze the mechanisms that facilitate the flow of information from input to output through various model components, known as mediators. As a case study, we apply this methodology to analyzing gender bias in pre-trained Transformer language models. We study the role of individual neurons and attention heads in mediating gender bias across three datasets designed to gauge a model's sensitivity to gender bias. Our mediation analysis reveals that gender bias effects are concentrated in specific components of the model that may exhibit highly specialized behavior.


#59
Cross-lingual Retrieval for Iterative Self-Supervised Training

Chau Tran · Yuqing Tang · Xian Li · Jiatao Gu

Recent studies have demonstrated the cross-lingual alignment ability of multilingual pretrained language models. In this work, we found that the cross-lingual alignment can be further improved by training seq2seq models on sentence pairs mined using their own encoder outputs. We utilized these findings to develop a new approach --- cross-lingual retrieval for iterative self-supervised training (CRISS), where mining and training processes are applied iteratively, improving cross-lingual alignment and translation ability at the same time. Using this method, we achieved state-of-the-art unsupervised machine translation results on 9 language directions with an average improvement of 2.4 BLEU, and on the Tatoeba sentence retrieval task in the XTREME benchmark on 16 languages with an average improvement of 21.5% in absolute accuracy. Furthermore, CRISS also brings an additional 1.8 BLEU improvement on average compared to mBART, when finetuned on supervised machine translation downstream tasks.


#60
DynaBERT: Dynamic BERT with Adaptive Width and Depth

Lu Hou · Zhiqi Huang · Lifeng Shang · Xin Jiang · Xiao Chen · Qun Liu

The pre-trained language models like BERT, though powerful in many natural language processing tasks, are both computation and memory expensive. To alleviate this problem, one approach is to compress them for specific tasks before deployment. However, recent works on BERT compression usually compress the large BERT model to a fixed smaller size, and can not fully satisfy the requirements of different edge devices with various hardware performances. In this paper, we propose a novel dynamic BERT model (abbreviated as DynaBERT), which can flexibly adjust the size and latency by selecting adaptive width and depth. The training process of DynaBERT includes first training a width-adaptive BERT and then allowing both adaptive width and depth, by distilling knowledge from the full-sized model to small sub-networks. Network rewiring is also used to keep the more important attention heads and neurons shared by more sub-networks. Comprehensive experiments under various efficiency constraints demonstrate that our proposed dynamic BERT (or RoBERTa) at its largest size has comparable performance as BERT-base (or RoBERTa-base), while at smaller widths and depths consistently outperforms existing BERT compression methods. Code is available at https://github.com/huawei-noah/Pretrained-Language-Model/tree/master/DynaBERT.


#62
Pre-training via Paraphrasing

Mike Lewis · Marjan Ghazvininejad · Gargi Ghosh · Armen Aghajanyan · Sida Wang · Luke Zettlemoyer

We introduce MARGE, a pre-trained sequence-to-sequence model learned with an unsupervised multi-lingual multi-document paraphrasing objective. MARGE provides an alternative to the dominant masked language modeling paradigm, where we self-supervise the \emph{reconstruction} of target text by \emph{retrieving} a set of related texts (in many languages) and conditioning on them to maximize the likelihood of generating the original. We show it is possible to jointly learn to do retrieval and reconstruction, given only a random initialization. The objective noisily captures aspects of paraphrase, translation, multi-document summarization, and information retrieval, allowing for strong zero-shot performance on several tasks. For example, with no additional task-specific training we achieve BLEU scores of up to 35.8 for document translation. We further show that fine-tuning gives strong performance on a range of discriminative and generative tasks in many languages, making MARGE the most generally applicable pre-training method to date.


#63
Dialog without Dialog Data: Learning Visual Dialog Agents from VQA Data

Michael Cogswell · Jiasen Lu · Rishabh Jain · Stefan Lee · Devi Parikh · Dhruv Batra

Can we develop visually grounded dialog agents that can efficiently adapt to new tasks without forgetting how to talk to people? Such agents could leverage a larger variety of existing data to generalize to a new task, minimizing expensive data collection and annotation. In this work, we study a setting we call "Dialog without Dialog", which requires agents to develop visually grounded dialog models that can adapt to new tasks without language level supervision. By factorizing intention and language, our model minimizes linguistic drift after fine-tuning for new tasks. We present qualitative results, automated metrics, and human studies that all show our model can adapt to new tasks and maintain language quality. Baselines either fail to perform well at new tasks or experience language drift, becoming unintelligible to humans. Code has been made available at: https://github.com/mcogswell/dialogwithoutdialog.


#64
Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing

Zihang Dai · Guokun Lai · Yiming Yang · Quoc V Le

With the success of language pretraining, it is highly desirable to develop more efficient architectures of good scalability that can exploit the abundant unlabeled data at a lower cost. To improve the efficiency, we examine the much-overlooked redundancy in maintaining a full-length token-level presentation, especially for tasks that only require a single-vector presentation of the sequence. With this intuition, we propose Funnel-Transformer which gradually compresses the sequence of hidden states to a shorter one and hence reduces the computation cost. More importantly, by re-investing the saved FLOPs from length reduction in constructing a deeper or wider model, we further improve the model capacity. In addition, to perform token-level predictions as required by common pretraining objectives, Funnel-Transformer is able to recover a deep representation for each token from the reduced hidden sequence via a decoder. Empirically, with comparable or fewer FLOPs, Funnel-Transformer outperforms the standard Transformer on a wide variety of sequence-level prediction tasks, including text classification, language understanding, and reading comprehension.


#65
Big Bird: Transformers for Longer Sequences

Manzil Zaheer · Guru Guruganesh · Kumar Avinava Dubey · Joshua Ainslie · Chris Alberti · Santiago Ontanon · Philip Pham · Anirudh Ravula · Qifan Wang · Li Yang · Amr Ahmed

Transformers-based models, such as BERT, have been one of the most successful deep learning models for NLP. Unfortunately, one of their core limitations is the quadratic dependency (mainly in terms of memory) on the sequence length due to their full attention mechanism. To remedy this, we propose, BigBird, a sparse attention mechanism that reduces this quadratic dependency to linear. We show that BigBird is a universal approximator of sequence functions and is Turing complete, thereby preserving these properties of the quadratic, full attention model. Along the way, our theoretical analysis reveals some of the benefits of having $O(1)$ global tokens (such as CLS), that attend to the entire sequence as part of the sparse attention mechanism. The proposed sparse attention can handle sequences of length up to 8x of what was previously possible using similar hardware. As a consequence of the capability to handle longer context, BigBird drastically improves performance on various NLP tasks such as question answering and summarization. We also propose novel applications to genomics data.


#66
Self-Supervised Generative Adversarial Compression

Chong Yu · Jeff Pool

Deep learning’s success has led to larger and larger models to handle more and more complex tasks; trained models often contain millions of parameters. These large models are compute- and memory-intensive, which makes it a challenge to deploy them with latency, throughput, and storage constraints. Some model compression methods have been successfully applied to image classification and detection or language models, but there has been very little work compressing generative adversarial networks (GANs) performing complex tasks. In this paper, we show that a standard model compression technique, weight pruning and knowledge distillation, cannot be applied to GANs using existing methods. We then develop a self-supervised compression technique which uses the trained discriminator to supervise the training of a compressed generator. We show that this framework has compelling performance to high degrees of sparsity, can be easily applied to new tasks and models, and enables meaningful comparisons between different compression granularities.


#67
The Generalized Lasso with Nonlinear Observations and Generative Priors

Zhaoqiang Liu · Jonathan Scarlett

In this paper, we study the problem of signal estimation from noisy non-linear measurements when the unknown $n$-dimensional signal is in the range of an $L$-Lipschitz continuous generative model with bounded $k$-dimensional inputs. We make the assumption of sub-Gaussian measurements, which is satisfied by a wide range of measurement models, such as linear, logistic, 1-bit, and other quantized models. In addition, we consider the impact of adversarial corruptions on these measurements. Our analysis is based on a generalized Lasso approach (Plan and Vershynin, 2016). We first provide a non-uniform recovery guarantee, which states that under i.i.d.~Gaussian measurements, roughly $O\left(\frac{k}{\epsilon^2}\log L\right)$ samples suffice for recovery with an $\ell_2$-error of $\epsilon$, and that this scheme is robust to adversarial noise. Then, we apply this result to neural network generative models, and discuss various extensions to other models and non-i.i.d.~measurements. Moreover, we show that our result can be extended to the uniform recovery guarantee under the assumption of a so-called local embedding property, which is satisfied by the 1-bit and censored Tobit models.


#68
Robust compressed sensing using generative models

Ajil Jalal · Liu Liu · Alex Dimakis · Constantine Caramanis

We consider estimating a high dimensional signal in $\R^n$ using a sublinear number of linear measurements. In analogy to classical compressed sensing, here we assume a generative model as a prior, that is, we assume the signal is represented by a deep generative model $G: \R^k \rightarrow \R^n$. Classical recovery approaches such as empirical risk minimization (ERM) are guaranteed to succeed when the measurement matrix is sub-Gaussian. However, when the measurement matrix and measurements are heavy tailed or have outliers, recovery may fail dramatically. In this paper we propose an algorithm inspired by the Median-of-Means (MOM). Our algorithm guarantees recovery for heavy tailed data, even in the presence of outliers. Theoretically, our results show our novel MOM-based algorithm enjoys the same sample complexity guarantees as ERM under sub-Gaussian assumptions. Our experiments validate both aspects of our claims: other algorithms are indeed fragile and fail under heavy tailed and/or corrupted data, while our approach exhibits the predicted robustness.


#69
Knowledge Distillation in Wide Neural Networks: Risk Bound, Data Efficiency and Imperfect Teacher

Guangda Ji · Zhanxing Zhu

Knowledge distillation is a strategy of training a student network with guide of the soft output from a teacher network. It has been a successful method of model compression and knowledge transfer. However, currently knowledge distillation lacks a convincing theoretical understanding. On the other hand, recent finding on neural tangent kernel enables us to approximate a wide neural network with a linear model of the network's random features. In this paper, we theoretically analyze the knowledge distillation of a wide neural network. First we provide a transfer risk bound for the linearized model of the network. Then we propose a metric of the task's training difficulty, called data inefficiency. Based on this metric, we show that for a perfect teacher, a high ratio of teacher's soft labels can be beneficial. Finally, for the case of imperfect teacher, we find that hard labels can correct teacher's wrong prediction, which explains the practice of mixing hard and soft labels.


#70
Fourier Spectrum Discrepancies in Deep Network Generated Images

Tarik Dzanic · Karan Shah · Freddie Witherden

Advancements in deep generative models such as generative adversarial networks and variational autoencoders have resulted in the ability to generate realistic images that are visually indistinguishable from real images which raises concerns about their potential malicious usage. In this paper, we present an analysis of the high-frequency Fourier modes of real and deep network generated images and show that deep network generated images share an observable, systematic shortcoming in replicating the attributes of these high-frequency modes. Using this, we propose a novel detection method based on the frequency spectrum of the images which is able to achieve an accuracy of up to 99.2% in classifying real and deep network generated images from various GAN and VAE architectures on a dataset of 5000 images with as few as 8 training examples. Furthermore, we show the impact of image transformations such as compression, cropping, and resolution reduction on the classification accuracy and suggest a method for modifying the high-frequency attributes of deep network generated images to mimic real images.


#71
Minimax Optimal Nonparametric Estimation of Heterogeneous Treatment Effects

Zijun Gao · Yanjun Han

A central goal of causal inference is to detect and estimate the treatment effects of a given treatment or intervention on an outcome variable of interest, where a member known as the heterogeneous treatment effect (HTE) is of growing popularity in recent practical applications such as the personalized medicine. In this paper, we model the HTE as a smooth nonparametric difference between two less smooth baseline functions, and determine the tight statistical limits of the nonparametric HTE estimation as a function of the covariate geometry. In particular, a two-stage nearest-neighbor-based estimator throwing away observations with poor matching quality is near minimax optimal. We also establish the tight dependence on the density ratio without the usual assumption that the covariate densities are bounded away from zero, where a key step is to employ a novel maximal inequality which could be of independent interest.


#72
Towards a Combinatorial Characterization of Bounded-Memory Learning

Alon Gonen · Shachar Lovett · Michal Moshkovitz

Combinatorial dimensions play an important role in the theory of machine learning. For example, VC dimension characterizes PAC learning, SQ dimension characterizes weak learning with statistical queries, and Littlestone dimension characterizes online learning. In this paper we aim to develop combinatorial dimensions that characterize bounded memory learning. We propose a candidate solution for the case of realizable strong learning under a known distribution, based on the SQ dimension of neighboring distributions. We prove both upper and lower bounds for our candidate solution, that match in some regime of parameters. This is the first characterization of strong learning under space constraints in any regime. In this parameter regime there is an equivalence between bounded memory and SQ learning. We conjecture that our characterization holds in a much wider regime of parameters.


#73
The Power of Comparisons for Actively Learning Linear Classifiers

Max Hopkins · Daniel Kane · Shachar Lovett

In the world of big data, large but costly to label datasets dominate many fields. Active learning, a semi-supervised alternative to the standard PAC-learning model, was introduced to explore whether adaptive labeling could learn concepts with exponentially fewer labeled samples. While previous results show that active learning performs no better than its supervised alternative for important concept classes such as linear separators, we show that by adding weak distributional assumptions and allowing comparison queries, active learning requires exponentially fewer samples. Further, we show that these results hold as well for a stronger model of learning called Reliable and Probably Useful (RPU) learning. In this model, our learner is not allowed to make mistakes, but may instead answer ``I don't know.'' While previous negative results showed this model to have intractably large sample complexity for label queries, we show that comparison queries make RPU-learning at worst logarithmically more expensive in both the passive and active regimes.


#74
Estimating decision tree learnability with polylogarithmic sample complexity

Guy Blanc · Neha Gupta · Jane Lange · Li-Yang Tan

We show that top-down decision tree learning heuristics (such as ID3, C4.5, and CART) are amenable to highly efficient {\sl learnability estimation}: for monotone target functions, the error of the decision tree hypothesis constructed by these heuristics can be estimated with {\sl polylogarithmically} many labeled examples, exponentially smaller than the number necessary to run these heuristics, and indeed, exponentially smaller than information-theoretic minimum required to learn a good decision tree. This adds to a small but growing list of fundamental learning algorithms that have been shown to be amenable to learnability estimation. En route to this result, we design and analyze sample-efficient {\sl minibatch} versions of top-down decision tree learning heuristics and show that they achieve the same provable guarantees as the full-batch versions. We further give ``active local'' versions of these heuristics: given a test point $x^\star$, we show how the label $T(x^\star)$ of the decision tree hypothesis $T$ can be computed with polylogarithmically many labeled examples, exponentially smaller than the number necessary to learn~$T$.


#75
Provably Efficient Neural Estimation of Structural Equation Models: An Adversarial Approach

Luofeng Liao · You-Lin Chen · Zhuoran Yang · Bo Dai · Mladen Kolar · Zhaoran Wang

Structural equation models (SEMs) are widely used in sciences, ranging from economics to psychology, to uncover causal relationships underlying a complex system under consideration and estimate structural parameters of interest. We study estimation in a class of generalized SEMs where the object of interest is defined as the solution to a linear operator equation. We formulate the linear operator equation as a min-max game, where both players are parameterized by neural networks (NNs), and learn the parameters of these neural networks using the stochastic gradient descent. We consider both 2-layer and multi-layer NNs with ReLU activation functions and prove global convergence in an overparametrized regime, where the number of neurons is diverging. The results are established using techniques from online learning and local linearization of NNs, and improve in several aspects the current state-of-the-art. For the first time we provide a tractable estimation procedure for SEMs based on NNs with provable convergence and without the need for sample splitting.


#76
Matrix Inference and Estimation in Multi-Layer Models

Parthe Pandit · Mojtaba Sahraee Ardakan · Sundeep Rangan · Philip Schniter · Alyson Fletcher

We consider the problem of estimating the input and hidden variables of a stochastic multi-layer neural network from an observation of the output. The hidden variables in each layer are represented as matrices with statistical interactions along both rows as well as columns. This problem applies to matrix imputation, signal recovery via deep generative prior models, multi-task and mixed regression, and learning certain classes of two-layer neural networks. We extend a recently-developed algorithm -- Multi-Layer Vector Approximate Message Passing (ML-VAMP), for this matrix-valued inference problem. It is shown that the performance of the proposed Multi-Layer Matrix VAMP (ML-Mat-VAMP) algorithm can be exactly predicted in a certain random large-system limit, where the dimensions $N\times d$ of the unknown quantities grow as $N\rightarrow\infty$ with $d$ fixed. In the two-layer neural-network learning problem, this scaling corresponds to the case where the number of input features, as well as training samples, grow to infinity but the number of hidden nodes stays fixed. The analysis enables a precise prediction of the parameter and test error of the learning.


#77
Election Coding for Distributed Learning: Protecting SignSGD against Byzantine Attacks

Jy-yong Sohn · Dong-Jun Han · Beongjun Choi · Jaekyun Moon

Current distributed learning systems suffer from serious performance degradation under Byzantine attacks. This paper proposes Election Coding, a coding-theoretic framework to guarantee Byzantine-robustness for distributed learning algorithms based on signed stochastic gradient descent (SignSGD) that minimizes the worker-master communication load. The suggested framework explores new information-theoretic limits of finding the majority opinion when some workers could be attacked by adversary, and paves the road to implement robust and communication-efficient distributed learning algorithms. Under this framework, we construct two types of codes, random Bernoulli codes and deterministic algebraic codes, that tolerate Byzantine attacks with a controlled amount of computational redundancy and guarantee convergence in general non-convex scenarios. For the Bernoulli codes, we provide an upper bound on the error probability in estimating the signs of the true gradients, which gives useful insights into code design for Byzantine tolerance. The proposed deterministic codes are proven to perfectly tolerate arbitrary Byzantine attacks. Experiments on real datasets confirm that the suggested codes provide substantial improvement in Byzantine tolerance of distributed learning systems employing SignSGD.


#78
Limits on Testing Structural Changes in Ising Models

Aditya Gangrade · Bobak Nazer · Venkatesh Saligrama

We present novel information-theoretic limits on detecting sparse changes in Isingmodels, a problem that arises in many applications where network changes canoccur due to some external stimuli. We show that the sample complexity fordetecting sparse changes, in a minimax sense, is no better than learning the entiremodel even in settings with local sparsity. This is a surprising fact in light of priorwork rooted in sparse recovery methods, which suggest that sample complexityin this context scales only with the number of network changes. To shed light onwhen change detection is easier than structured learning, we consider testing ofedge deletion in forest-structured graphs, and high-temperature ferromagnets ascase studies. We show for these that testing of small changes is similarly hard, buttesting oflargechanges is well-separated from structure learning. These resultsimply that testing of graphical models may not be amenable to concepts such asrestricted strong convexity leveraged for sparsity pattern recovery, and algorithmdevelopment instead should be directed towards detection of large changes.


#79
A Robust Functional EM Algorithm for Incomplete Panel Count Data

Alexander Moreno · Zhenke Wu · Jamie Roslyn Yap · Cho Lam · David Wetter · Inbal Nahum-Shani · Walter Dempsey · James Rehg

Panel count data describes aggregated counts of recurrent events observed at discrete time points. To understand dynamics of health behaviors and predict future negative events, the field of quantitative behavioral research has evolved to increasingly rely upon panel count data collected via multiple self reports, for example, about frequencies of smoking using in-the-moment surveys on mobile devices. However, missing reports are common and present a major barrier to downstream statistical learning. As a first step, under a missing completely at random assumption (MCAR), we propose a simple yet widely applicable functional EM algorithm to estimate the counting process mean function, which is of central interest to behavioral scientists. The proposed approach wraps several popular panel count inference methods, seamlessly deals with incomplete counts and is robust to misspecification of the Poisson process assumption. Theoretical analysis of the proposed algorithm provides finite-sample guarantees by extending parametric EM theory to the general non-parametric setting. We illustrate the utility of the proposed algorithm through numerical experiments and an analysis of smoking cessation data. We also discuss useful extensions to address deviations from the MCAR assumption and covariate effects.


#80
Weston-Watkins Hinge Loss and Ordered Partitions

Yutong Wang · Clayton Scott

Multiclass extensions of the support vector machine (SVM) have been formulated in a variety of ways. A recent empirical comparison of nine such formulations [Doǧan et al. 2016] recommends the variant proposed by Weston and Watkins (WW), despite the fact that the WW-hinge loss is not calibrated with respect to the 0-1 loss. In this work we introduce a novel discrete loss function for multiclass classification, the ordered partition loss, and prove that the WW-hinge loss is calibrated with respect to this loss. We also argue that the ordered partition loss is minimally emblematic among discrete losses satisfying this property. Finally, we apply our theory to justify the empirical observation made by Doǧan et al that the WW-SVM can work well even under massive label noise, a challenging setting for multiclass SVMs.


#81
On the Equivalence between Online and Private Learnability beyond Binary Classification

Young H Jung · Baekjin Kim · Ambuj Tewari

Alon et al. [2019] and Bun et al. [2020] recently showed that online learnability and private PAC learnability are equivalent in binary classification. We investigate whether this equivalence extends to multi-class classification and regression. First, we show that private learnability implies online learnability in both settings. Our extension involves studying a novel variant of the Littlestone dimension that depends on a tolerance parameter and on an appropriate generalization of the concept of threshold functions beyond binary classification. Second, we show that while online learnability continues to imply private learnability in multi-class classification, current proof techniques encounter significant hurdles in the regression setting. While the equivalence for regression remains open, we provide non-trivial sufficient conditions for an online learnable class to also be privately learnable.


#82
Breaking the Sample Size Barrier in Model-Based Reinforcement Learning with a Generative Model

Gen Li · Yuting Wei · Yuejie Chi · Yuantao Gu · Yuxin Chen

We investigate the sample efficiency of reinforcement learning in a $\gamma$-discounted infinite-horizon Markov decision process (MDP) with state space S and action space A, assuming access to a generative model. Despite a number of prior work tackling this problem, a complete picture of the trade-offs between sample complexity and statistical accuracy is yet to be determined. In particular, prior results suffer from a sample size barrier, in the sense that their claimed statistical guarantees hold only when the sample size exceeds at least $ |S| |A| / (1-\gamma)^2 $ (up to some log factor). The current paper overcomes this barrier by certifying the minimax optimality of model-based reinforcement learning as soon as the sample size exceeds the order of $ |S| |A| / (1-\gamma) $ (modulo some log factor). More specifically, a perturbed model-based planning algorithm provably finds an $\epsilon$-optimal policy with an order of $ |S| |A| / ((1-\gamma)^3\epsilon^2 ) $ samples (up to log factor) for any $0< \epsilon < 1/(1-\gamma)$. Along the way, we derive improved (instance-dependent) guarantees for model-based policy evaluation. To the best of our knowledge, this work provides the first minimax-optimal guarantee in a generative model that accommodates the entire range of sample sizes (beyond which finding a meaningful policy is information theoretically impossible).


#84
A Finite-Time Analysis of Two Time-Scale Actor-Critic Methods

Yue Wu · Weitong ZHANG · Pan Xu · Quanquan Gu

Actor-critic (AC) methods have exhibited great empirical success compared with other reinforcement learning algorithms, where the actor uses the policy gradient to improve the learning policy and the critic uses temporal difference learning to estimate the policy gradient. Under the two time-scale learning rate schedule, the asymptotic convergence of AC has been well studied in the literature. However, the non-asymptotic convergence and finite sample complexity of actor-critic methods are largely open. In this work, we provide a non-asymptotic analysis for two time-scale actor-critic methods under non-i.i.d. setting. We prove that the actor-critic method is guaranteed to find a first-order stationary point (i.e., $\|\nabla J(\bm{\theta})\|_2^2 \le \epsilon$) of the non-concave performance function $J(\bm{\theta})$, with $\mathcal{\tilde{O}}(\epsilon^{-2.5})$ sample complexity. To the best of our knowledge, this is the first work providing finite-time analysis and sample complexity bound for two time-scale actor-critic methods.


#85
Reinforcement Learning for Control with Multiple Frequencies

Jongmin Lee · Byung-Jun Lee · Kee-Eung Kim

Many real-world sequential decision problems involve multiple action variables whose control frequencies are different, such that actions take their effects at different periods. While these problems can be formulated with the notion of multiple action persistences in factored-action MDP (FA-MDP), it is non-trivial to solve them efficiently since an action-persistent policy constructed from a stationary policy can be arbitrarily suboptimal, rendering solution methods for the standard FA-MDPs hardly applicable. In this paper, we formalize the problem of multiple control frequencies in RL and provide its efficient solution method. Our proposed method, Action-Persistent Policy Iteration (AP-PI), provides a theoretical guarantee on the convergence to an optimal solution while incurring only a factor of $|A|$ increase in time complexity during policy improvement step, compared to the standard policy iteration for FA-MDPs. Extending this result, we present Action-Persistent Actor-Critic (AP-AC), a scalable RL algorithm for high-dimensional control tasks. In the experiments, we demonstrate that AP-AC significantly outperforms the baselines on several continuous control tasks and a traffic control simulation, which highlights the effectiveness of our method that directly optimizes the periodic non-stationary policy for tasks with multiple control frequencies.


#86
Bridging Imagination and Reality for Model-Based Deep Reinforcement Learning

Guangxiang Zhu · Minghao Zhang · Honglak Lee · Chongjie Zhang

Sample efficiency has been one of the major challenges for deep reinforcement learning. Recently, model-based reinforcement learning has been proposed to address this challenge by performing planning on imaginary trajectories with a learned world model. However, world model learning may suffer from overfitting to training trajectories, and thus model-based value estimation and policy search will be prone to be sucked in an inferior local policy. In this paper, we propose a novel model-based reinforcement learning algorithm, called BrIdging Reality and Dream (BIRD). It maximizes the mutual information between imaginary and real trajectories so that the policy improvement learned from imaginary trajectories can be easily generalized to real trajectories. We demonstrate that our approach improves sample efficiency of model-based planning, and achieves state-of-the-art performance on challenging visual control benchmarks.


#87
First Order Constrained Optimization in Policy Space

Yiming Zhang · Quan Vuong · Keith Ross

In reinforcement learning, an agent attempts to learn high-performing behaviors through interacting with the environment, such behaviors are often quantified in the form of a reward function. However some aspects of behavior—such as ones which are deemed unsafe and to be avoided—are best captured through constraints. We propose a novel approach called First Order Constrained Optimization in Policy Space (FOCOPS) which maximizes an agent's overall reward while ensuring the agent satisfies a set of cost constraints. Using data generated from the current policy, FOCOPS first finds the optimal update policy by solving a constrained optimization problem in the nonparameterized policy space. FOCOPS then projects the update policy back into the parametric policy space. Our approach has an approximate upper bound for worst-case constraint violation throughout training and is first-order in nature therefore simple to implement. We provide empirical evidence that our simple approach achieves better performance on a set of constrained robotics locomotive tasks.


#88
DisCor: Corrective Feedback in Reinforcement Learning via Distribution Correction

Aviral Kumar · Abhishek Gupta · Sergey Levine

Deep reinforcement learning can learn effective policies for a wide range of tasks, but is notoriously difficult to use due to instability and sensitivity to hyperparameters. The reasons for this remain unclear. In this paper, we study how RL methods based on bootstrapping-based Q-learning can suffer from a pathological interaction between function approximation and the data distribution used to train the Q-function: with standard supervised learning, online data collection should induce corrective feedback, where new data corrects mistakes in old predictions. With dynamic programming methods like Q-learning, such feedback may be absent. This can lead to potential instability, sub-optimal convergence, and poor results when learning from noisy, sparse or delayed rewards. Based on these observations, we propose a new algorithm, DisCor, which explicitly optimizes for data distributions that can correct for accumulated errors in the value function. DisCor computes a tractable approximation to the distribution that optimally induces corrective feedback, which we show results in reweighting samples based on the estimated accuracy of their target values. Using this distribution for training, DisCor results in substantial improvements in a range of challenging RL settings, such as multi-task learning and learning from noisy reward signals.


#89
Natural Policy Gradient Primal-Dual Method for Constrained Markov Decision Processes

Dongsheng Ding · Kaiqing Zhang · Tamer Basar · Mihailo Jovanovic

We study sequential decision-making problems in which each agent aims to maximize the expected total reward while satisfying a constraint on the expected total utility. We employ the natural policy gradient method to solve the discounted infinite-horizon Constrained Markov Decision Processes (CMDPs) problem. Specifically, we propose a new Natural Policy Gradient Primal-Dual (NPG-PD) method for CMDPs which updates the primal variable via natural policy gradient ascent and the dual variable via projected sub-gradient descent. Even though the underlying maximization involves a nonconcave objective function and a nonconvex constraint set under the softmax policy parametrization, we prove that our method achieves global convergence with sublinear rates regarding both the optimality gap and the constraint violation. Such a convergence is independent of the size of the state-action space, i.e., it is~dimension-free. Furthermore, for the general smooth policy class, we establish sublinear rates of convergence regarding both the optimality gap and the constraint violation, up to a function approximation error caused by restricted policy parametrization. Finally, we show that two sample-based NPG-PD algorithms inherit such non-asymptotic convergence properties and provide finite-sample complexity guarantees. To the best of our knowledge, our work is the first to establish non-asymptotic convergence guarantees of policy-based primal-dual methods for solving infinite-horizon discounted CMDPs. We also provide computational results to demonstrate merits of our approach.


#90
MOPO: Model-based Offline Policy Optimization

Tianhe Yu · Garrett Thomas · Lantao Yu · Stefano Ermon · James Zou · Sergey Levine · Chelsea Finn · Tengyu Ma

Offline reinforcement learning (RL) refers to the problem of learning policies entirely from a batch of previously collected data. This problem setting is compelling, because it offers the promise of utilizing large, diverse, previously collected datasets to acquire policies without any costly or dangerous active exploration, but it is also exceptionally difficult, due to the distributional shift between the offline training data and the learned policy. While there has been significant progress in model-free offline RL, the most successful prior methods constrain the policy to the support of the data, precluding generalization to new states. In this paper, we observe that an existing model-based RL algorithm on its own already produces significant gains in the offline setting, as compared to model-free approaches, despite not being designed for this setting. However, although many standard model-based RL methods already estimate the uncertainty of their model, they do not by themselves provide a mechanism to avoid the issues associated with distributional shift in the offline setting. We therefore propose to modify existing model-based RL methods to address these issues by casting offline model-based RL into a penalized MDP framework. We theoretically show that, by using this penalized MDP, we are maximizing a lower bound of the return in the true MDP. Based on our theoretical results, we propose a new model-based offline RL algorithm that applies the variance of a Lipschitz-regularized model as a penalty to the reward function. We find that this algorithm outperforms both standard model-based RL methods and existing state-of-the-art model-free offline RL approaches on existing offline RL benchmarks, as well as two challenging continuous control tasks that require generalizing from data collected for a different task.


#91
Trust the Model When It Is Confident: Masked Model-based Actor-Critic

Feiyang Pan · Jia He · Dandan Tu · Qing He

It is a popular belief that model-based Reinforcement Learning (RL) is more sample efficient than model-free RL, but in practice, it is not always true due to overweighed model errors. In complex and noisy settings, model-based RL tends to have trouble using the model if it does not know when to trust the model.

In this work, we find that better model usage can make a huge difference. We show theoretically that if the use of model-generated data is restricted to state-action pairs where the model error is small, the performance gap between model and real rollouts can be reduced. It motivates us to use model rollouts only when the model is confident about its predictions. We propose Masked Model-based Actor-Critic (M2AC), a novel policy optimization algorithm that maximizes a model-based lower-bound of the true value function. M2AC implements a masking mechanism based on the model's uncertainty estimation to decide whether the model should be used or not. Consequently, the new algorithm tends to give robust policy improvements. Experiments on continuous control benchmarks demonstrate that M2AC has strong performance even when using long model rollouts in very noisy environments, and significantly outperforms previous state-of-the-art methods.


#92
Pipeline PSRO: A Scalable Approach for Finding Approximate Nash Equilibria in Large Games

Stephen McAleer · JB Lanier · Roy Fox · Pierre Baldi

Finding approximate Nash equilibria in zero-sum imperfect-information games is challenging when the number of information states is large. Policy Space Response Oracles (PSRO) is a deep reinforcement learning algorithm grounded in game theory that is guaranteed to converge to an approximate Nash equilibrium. However, PSRO requires training a reinforcement learning policy at each iteration, making it too slow for large games. We show through counterexamples and experiments that DCH and Rectified PSRO, two existing approaches to scaling up PSRO, fail to converge even in small games. We introduce Pipeline PSRO (P2SRO), the first scalable PSRO-based method for finding approximate Nash equilibria in large zero-sum imperfect-information games. P2SRO is able to parallelize PSRO with convergence guarantees by maintaining a hierarchical pipeline of reinforcement learning workers, each training against the policies generated by lower levels in the hierarchy. We show that unlike existing methods, P2SRO converges to an approximate Nash equilibrium, and does so faster as the number of parallel workers increases, across a variety of imperfect information games. We also introduce an open-source environment for Barrage Stratego, a variant of Stratego with an approximate game tree complexity of 10^50. P2SRO is able to achieve state-of-the-art performance on Barrage Stratego and beats all existing bots. Experiment code is available at https://github.com/JBLanier/pipeline-psro.


#93
Model-Based Multi-Agent RL in Zero-Sum Markov Games with Near-Optimal Sample Complexity

Kaiqing Zhang · Sham Kakade · Tamer Basar · Lin Yang

Model-based reinforcement learning (RL), which finds an optimal policy using an empirical model, has long been recognized as one of the cornerstones of RL. It is especially suitable for multi-agent RL (MARL), as it naturally decouples the learning and the planning phases, and avoids the non-stationarity problem when all agents are improving their policies simultaneously using samples. Though intuitive and widely-used, the sample complexity of model-based MARL algorithms has been investigated relatively much less often. In this paper, we aim to address the fundamental open question about the sample complexity of model-based MARL. We study arguably the most basic MARL setting: two-player discounted zero-sum Markov games, given only access to a generative model of state transition. We show that model-based MARL achieves a sample complexity of $\tilde \cO(|\cS||\cA||\cB|(1-\gamma)^{-3}\epsilon^{-2})$ for finding the Nash equilibrium (NE) \emph{value} up to some $\epsilon$ error, and the $\epsilon$-NE \emph{policies}, where $\gamma$ is the discount factor, and $\cS,\cA,\cB$ denote the state space, and the action spaces for the two agents. We also show that this method is near-minimax optimal with a tight dependence on $1-\gamma$ and $|\cS|$ by providing a lower bound of $\Omega(|\cS|(|\cA|+|\cB|)(1-\gamma)^{-3}\epsilon^{-2})$. Our results justify the efficiency of this simple model-based approach in the multi-agent RL setting.


#94
MOReL: Model-Based Offline Reinforcement Learning

Rahul Kidambi · Aravind Rajeswaran · Praneeth Netrapalli · Thorsten Joachims

In offline reinforcement learning (RL), the goal is to learn a highly rewarding policy based solely on a dataset of historical interactions with the environment. This serves as an extreme test for an agent's ability to effectively use historical data which is known to be critical for efficient RL. Prior work in offline RL has been confined almost exclusively to model-free RL approaches. In this work, we present MOReL, an algorithmic framework for model-based offline RL. This framework consists of two steps: (a) learning a pessimistic MDP using the offline dataset; (b) learning a near-optimal policy in this pessimistic MDP. The design of the pessimistic MDP is such that for any policy, the performance in the real environment is approximately lower-bounded by the performance in the pessimistic MDP. This enables the pessimistic MDP to serve as a good surrogate for purposes of policy evaluation and learning. Theoretically, we show that MOReL is minimax optimal (up to log factors) for offline RL. Empirically, MOReL matches or exceeds state-of-the-art results on widely used offline RL benchmarks. Overall, the modular design of MOReL enables translating advances in its components (for e.g., in model learning, planning etc.) to improvements in offline RL.


#95
Variance-Reduced Off-Policy TDC Learning: Non-Asymptotic Convergence Analysis

Shaocong Ma · Yi Zhou · Shaofeng Zou

Variance reduction techniques have been successfully applied to temporal-difference (TD) learning and help to improve the sample complexity in policy evaluation. However, the existing work applied variance reduction to either the less popular one time-scale TD algorithm or the two time-scale GTD algorithm but with a finite number of i.i.d.\ samples, and both algorithms apply to only the on-policy setting. In this work, we develop a variance reduction scheme for the two time-scale TDC algorithm in the off-policy setting and analyze its non-asymptotic convergence rate over both i.i.d.\ and Markovian samples. In the i.i.d setting, our algorithm achieves an improved sample complexity $\calO(\epsilon^{-\frac{3}{5}} \log{\epsilon}^{-1})$ over the state-of-the-art result $\calO(\epsilon^{-1} \log {\epsilon}^{-1})$. In the Markovian setting, our algorithm achieves the state-of-the-art sample complexity $\calO(\epsilon^{-1} \log {\epsilon}^{-1})$ that is near-optimal. Experiments demonstrate that the proposed variance-reduced TDC achieves a smaller asymptotic convergence error than both the conventional TDC and the variance-reduced TD.


#96
Independent Policy Gradient Methods for Competitive Reinforcement Learning

Constantinos Daskalakis · Dylan Foster · Noah Golowich

We obtain global, non-asymptotic convergence guarantees for independent learning algorithms in competitive reinforcement learning settings with two agents (i.e., zero-sum stochastic games). We consider an episodic setting where in each episode, each player independently selects a policy and observes only their own actions and rewards, along with the state. We show that if both players run policy gradient methods in tandem, their policies will converge to a min-max equilibrium of the game, as long as their learning rates follow a two-timescale rule (which is necessary). To the best of our knowledge, this constitutes the first finite-sample convergence result for independent policy gradient methods in competitive RL; prior work has largely focused on centralized, coordinated procedures for equilibrium computation.


#97
Provably Good Batch Reinforcement Learning Without Great Exploration

Yao Liu · Adith Swaminathan · Alekh Agarwal · Emma Brunskill

Batch reinforcement learning (RL) is important to apply RL algorithms to many high stakes tasks. Doing batch RL in a way that yields a reliable new policy in large domains is challenging: a new decision policy may visit states and actions outside the support of the batch data, and function approximation and optimization with limited samples can further increase the potential of learning policies with overly optimistic estimates of their future performance. Some recent approaches to address these concerns have shown promise, but can still be overly optimistic in their expected outcomes. Theoretical work that provides strong guarantees on the performance of the output policy relies on a strong concentrability assumption, which makes it unsuitable for cases where the ratio between state-action distributions of behavior policy and some candidate policies is large. This is because, in the traditional analysis, the error bound scales up with this ratio. We show that using \emph{pessimistic value estimates} in the low-data regions in Bellman optimality and evaluation back-up can yield more adaptive and stronger guarantees when the concentrability assumption does not hold. In certain settings, they can find the approximately best policy within the state-action space explored by the batch data, without requiring a priori assumptions of concentrability. We highlight the necessity of our pessimistic update and the limitations of previous algorithms and analyses by illustrative MDP examples and demonstrate an empirical comparison of our algorithm and other state-of-the-art batch RL baselines in standard benchmarks.


#98
(De)Randomized Smoothing for Certifiable Defense against Patch Attacks

Alexander Levine · Soheil Feizi

Patch adversarial attacks on images, in which the attacker can distort pixels within a region of bounded size, are an important threat model since they provide a quantitative model for physical adversarial attacks. In this paper, we introduce a certifiable defense against patch attacks that guarantees for a given image and patch attack size, no patch adversarial examples exist. Our method is related to the broad class of randomized smoothing robustness schemes which provide high-confidence probabilistic robustness certificates. By exploiting the fact that patch attacks are more constrained than general sparse attacks, we derive meaningfully large robustness certificates against them. Additionally, in contrast to smoothing-based defenses against L_p and sparse attacks, our defense method against patch attacks is de-randomized, yielding improved, deterministic certificates. Compared to the existing patch certification method proposed by (Chiang et al., 2020), which relies on interval bound propagation, our method can be trained significantly faster, achieves high clean and certified robust accuracy on CIFAR-10, and provides certificates at ImageNet scale. For example, for a 5-by-5 patch attack on CIFAR-10, our method achieves up to around 57.6% certified accuracy (with a classifier with around 83.8% clean accuracy), compared to at most 30.3% certified accuracy for the existing method (with a classifier with around 47.8% clean accuracy). Our results effectively establish a new state-of-the-art of certifiable defense against patch attacks on CIFAR-10 and ImageNet.


#99
Contrastive Learning with Adversarial Examples

Chih-Hui Ho · Nuno Nvasconcelos

Contrastive learning (CL) is a popular technique for self-supervised learning (SSL) of visual representations. It uses pairs of augmentations of unlabeled training examples to define a classification task for pretext learning of a deep embedding. Despite extensive works in augmentation procedures, prior works do not address the selection of challenging negative pairs, as images within a sampled batch are treated independently. This paper addresses the problem, by introducing a new family of adversarial examples for constrastive learning and using these examples to define a new adversarial training algorithm for SSL, denoted as CLAE. When compared to standard CL, the use of adversarial examples creates more challenging positive pairs and adversarial training produces harder negative pairs by accounting for all images in a batch during the optimization. CLAE is compatible with many CL methods in the literature. Experiments show that it improves the performance of several existing CL baselines on multiple datasets.


#100
CoADNet: Collaborative Aggregation-and-Distribution Networks for Co-Salient Object Detection

Qijian Zhang · Runmin Cong · Junhui Hou · Chongyi Li · Yao Zhao

Co-Salient Object Detection (CoSOD) aims at discovering salient objects that repeatedly appear in a given query group containing two or more relevant images. One challenging issue is how to effectively capture co-saliency cues by modeling and exploiting inter-image relationships. In this paper, we present an end-to-end collaborative aggregation-and-distribution network (CoADNet) to capture both salient and repetitive visual patterns from multiple images. First, we integrate saliency priors into the backbone features to suppress the redundant background information through an online intra-saliency guidance structure. After that, we design a two-stage aggregate-and-distribute architecture to explore group-wise semantic interactions and produce the co-saliency features. In the first stage, we propose a group-attentional semantic aggregation module that models inter-image relationships to generate the group-wise semantic representations. In the second stage, we propose a gated group distribution module that adaptively distributes the learned group semantics to different individuals in a dynamic gating mechanism. Finally, we develop a group consistency preserving decoder tailored for the CoSOD task, which maintains group constraints during feature decoding to predict more consistent full-resolution co-saliency maps. The proposed CoADNet is evaluated on four prevailing CoSOD benchmark datasets, which demonstrates the remarkable performance improvement over ten state-of-the-art competitors.


#101
Glow-TTS: A Generative Flow for Text-to-Speech via Monotonic Alignment Search

Jaehyeon Kim · Sungwon Kim · Jungil Kong · Sungroh Yoon

Recently, text-to-speech (TTS) models such as FastSpeech and ParaNet have been proposed to generate mel-spectrograms from text in parallel. Despite the advantage, the parallel TTS models cannot be trained without guidance from autoregressive TTS models as their external aligners. In this work, we propose Glow-TTS, a flow-based generative model for parallel TTS that does not require any external aligner. By combining the properties of flows and dynamic programming, the proposed model searches for the most probable monotonic alignment between text and the latent representation of speech on its own. We demonstrate that enforcing hard monotonic alignments enables robust TTS, which generalizes to long utterances, and employing generative flows enables fast, diverse, and controllable speech synthesis. Glow-TTS obtains an order-of-magnitude speed-up over the autoregressive model, Tacotron 2, at synthesis with comparable speech quality. We further show that our model can be easily extended to a multi-speaker setting.


#102
The Cone of Silence: Speech Separation by Localization

Teerapat Jenrungrot · Vivek Jayaram · Steve Seitz · Ira Kemelmacher-Shlizerman

Given a multi-microphone recording of an unknown number of speakers talking concurrently, we simultaneously localize the sources and separate the individual speakers. At the core of our method is a deep network, in the waveform domain, which isolates sources within an angular region $\theta \pm w/2$, given an angle of interest $\theta$ and angular window size $w$. By exponentially decreasing $w$, we can perform a binary search to localize and separate all sources in logarithmic time. Our algorithm also allows for an arbitrary number of potentially moving speakers at test time, including more speakers than seen during training. Experiments demonstrate state of the art performance for both source separation and source localization, particularly in high levels of background noise.


#103
HiFi-GAN: Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis

Jungil Kong · Jaehyeon Kim · Jaekyoung Bae

Several recent work on speech synthesis have employed generative adversarial networks (GANs) to produce raw waveforms. Although such methods improve the sampling efficiency and memory usage, their sample quality has not yet reached that of autoregressive and flow-based generative models. In this work, we propose HiFi-GAN, which achieves both efficient and high-fidelity speech synthesis. As speech audio consists of sinusoidal signals with various periods, we demonstrate that modeling periodic patterns of an audio is crucial for enhancing sample quality. A subjective human evaluation (mean opinion score, MOS) of a single speaker dataset indicates that our proposed method demonstrates similarity to human quality while generating 22.05 kHz high-fidelity audio 167.9 times faster than real-time on a single V100 GPU. We further show the generality of HiFi-GAN to the mel-spectrogram inversion of unseen speakers and end-to-end speech synthesis. Finally, a small footprint version of HiFi-GAN generates samples 13.4 times faster than real-time on CPU with comparable quality to an autoregressive counterpart.


#105
Swapping Autoencoder for Deep Image Manipulation

Taesung Park · Jun-Yan Zhu · Oliver Wang · Jingwan Lu · Eli Shechtman · Alexei Efros · Richard Zhang

Deep generative models have become increasingly effective at producing realistic images from randomly sampled seeds, but using such models for controllable manipulation of existing images remains challenging. We propose the Swapping Autoencoder, a deep model designed specifically for image manipulation, rather than random sampling. The key idea is to encode an image into two independent components and enforce that any swapped combination maps to a realistic image. In particular, we encourage the components to represent structure and texture, by enforcing one component to encode co-occurrent patch statistics across different parts of the image. As our method is trained with an encoder, finding the latent codes for a new input image becomes trivial, rather than cumbersome. As a result, our method enables us to manipulate real input images in various ways, including texture swapping, local and global editing, and latent code vector arithmetic. Experiments on multiple datasets show that our model produces better results and is substantially more efficient compared to recent generative models.


#106
LAPAR: Linearly-Assembled Pixel-Adaptive Regression Network for Single Image Super-resolution and Beyond

Wenbo Li · Kun Zhou · Lu Qi · Nianjuan Jiang · Jiangbo Lu · Jiaya Jia

Single image super-resolution (SISR) deals with a fundamental problem of upsampling a low-resolution (LR) image to its high-resolution (HR) version. Last few years have witnessed impressive progress propelled by deep learning methods. However, one critical challenge faced by existing methods is to strike a sweet spot of deep model complexity and resulting SISR quality. This paper addresses this pain point by proposing a linearly-assembled pixel-adaptive regression network (LAPAR), which casts the direct LR to HR mapping learning into a linear coefficient regression task over a dictionary of multiple predefined filter bases. Such a parametric representation renders our model highly lightweight and easy to optimize while achieving state-of-the-art results on SISR benchmarks. Moreover, based on the same idea, LAPAR is extended to tackle other restoration tasks, e.g., image denoising and JPEG image deblocking, and again, yields strong performance.


#107
Domain Generalization via Entropy Regularization

Shanshan Zhao · Mingming Gong · Tongliang Liu · Huan Fu · Dacheng Tao

Domain generalization aims to learn from multiple source domains a predictive model that can generalize to unseen target domains. One essential problem in domain generalization is to learn discriminative domain-invariant features. To arrive at this, some methods introduce a domain discriminator through adversarial learning to match the feature distributions in multiple source domains. However, adversarial training can only guarantee that the learned features have invariant marginal distributions, while the invariance of conditional distributions is more important for prediction in new domains. To ensure the conditional invariance of learned features, we propose an entropy regularization term that measures the dependency between the learned features and the class labels. Combined with the typical task-related loss, e.g., cross-entropy loss for classification, and adversarial loss for domain discrimination, our overall objective is guaranteed to learn conditional-invariant features across all source domains and thus can learn classifiers with better generalization capabilities. We demonstrate the effectiveness of our method through comparison with state-of-the-art methods on both simulated and real-world datasets. Code is available at: https://github.com/sshan-zhao/DGviaER.


#108
Self-Supervised Few-Shot Learning on Point Clouds

Charu Sharma · Manohar Kaul

The increased availability of massive point clouds coupled with their utility in a wide variety of applications such as robotics, shape synthesis, and self-driving cars has attracted increased attention from both industry and academia. Recently, deep neural networks operating on labeled point clouds have shown promising results on supervised learning tasks like classification and segmentation. However, supervised learning leads to the cumbersome task of annotating the point clouds. To combat this problem, we propose two novel self-supervised pre-training tasks that encode a hierarchical partitioning of the point clouds using a cover-tree, where point cloud subsets lie within balls of varying radii at each level of the cover-tree. Furthermore, our self-supervised learning network is restricted to pre-train on the support set (comprising of scarce training examples) used to train the downstream network in a few-shot learning (FSL) setting. Finally, the fully-trained self-supervised network's point embeddings are input to the downstream task's network. We present a comprehensive empirical evaluation of our method on both downstream classification and segmentation tasks and show that supervised methods pre-trained with our self-supervised learning method significantly improve the accuracy of state-of-the-art methods. Additionally, our method also outperforms previous unsupervised methods in downstream classification tasks.


#109
DeepSVG: A Hierarchical Generative Network for Vector Graphics Animation

Alexandre Carlier · Martin Danelljan · Alexandre Alahi · Radu Timofte

Scalable Vector Graphics (SVG) are ubiquitous in modern 2D interfaces due to their ability to scale to different resolutions. However, despite the success of deep learning-based models applied to rasterized images, the problem of vector graphics representation learning and generation remains largely unexplored. In this work, we propose a novel hierarchical generative network, called DeepSVG, for complex SVG icons generation and interpolation. Our architecture effectively disentangles high-level shapes from the low-level commands that encode the shape itself. The network directly predicts a set of shapes in a non-autoregressive fashion. We introduce the task of complex SVG icons generation by releasing a new large-scale dataset along with an open-source library for SVG manipulation. We demonstrate that our network learns to accurately reconstruct diverse vector graphics, and can serve as a powerful animation tool by performing interpolations and other latent space operations. Our code is available at https://github.com/alexandre01/deepsvg.


#110
CLEARER: Multi-Scale Neural Architecture Search for Image Restoration

Yuanbiao Gou · Boyun Li · Zitao Liu · Songfan Yang · Xi Peng

Multi-scale neural networks have shown effectiveness in image restoration tasks, which are usually designed and integrated in a handcrafted manner. Different from the existing labor-intensive handcrafted architecture design paradigms, we present a novel method, termed as multi-sCaLe nEural ARchitecture sEarch for image Restoration (CLEARER), which is a specifically designed neural architecture search (NAS) for image restoration. Our contributions are twofold. On one hand, we design a multi-scale search space that consists of three task-flexible modules. Namely, 1) Parallel module that connects multi-resolution neural blocks in parallel, while preserving the channels and spatial-resolution in each neural block, 2) Transition module remains the existing multi-resolution features while extending them to a lower resolution, 3) Fusion module integrates multi-resolution features by passing the features of the parallel neural blocks to the current neural blocks. On the other hand, we present novel losses which could 1) balance the tradeoff between the model complexity and performance, which is highly expected to image restoration; and 2) relax the discrete architecture parameters into a continuous distribution which approximates to either 0 or 1. As a result, a differentiable strategy could be employed to search when to fuse or extract multi-resolution features, while the discretization issue faced by the gradient-based NAS could be alleviated. The proposed CLEARER could search a promising architecture in two GPU hours. Extensive experiments show the promising performance of our method comparing with nine image denoising methods and eight image deraining approaches in quantitative and qualitative evaluations. The codes are available at https://github.com/limit-scu.


#111
Language and Visual Entity Relationship Graph for Agent Navigation

Yicong Hong · Cristian Rodriguez · Yuankai Qi · Qi Wu · Stephen Gould

Vision-and-Language Navigation (VLN) requires an agent to navigate in a real-world environment following natural language instructions. From both the textual and visual perspectives, we find that the relationships among the scene, its objects, and directional cues are essential for the agent to interpret complex instructions and correctly perceive the environment. To capture and utilize the relationships, we propose a novel Language and Visual Entity Relationship Graph for modelling the inter-modal relationships between text and vision, and the intra-modal relationships among visual entities. We propose a message passing algorithm for propagating information between language elements and visual entities in the graph, which we then combine to determine the next action to take. Experiments show that by taking advantage of the relationships we are able to improve over state-of-the-art. On the Room-to-Room (R2R) benchmark, our method achieves the new best performance on the test unseen split with success rate weighted by path length of 52%. On the Room-for-Room (R4R) dataset, our method significantly improves the previous best from 13% to 34% on the success weighted by normalized dynamic time warping.


#112
Fast Fourier Convolution

Lu Chi · Borui Jiang · Yadong Mu

Vanilla convolutions in modern deep networks are known to operate locally and at fixed scale (e.g., the widely-adopted 3*3 kernels in image-oriented tasks). This causes low efficacy in connecting two distant locations in the network. In this work, we propose a novel convolutional operator dubbed as fast Fourier convolution (FFC), which has the main hallmarks of non-local receptive fields and cross-scale fusion within the convolutional unit. According to spectral convolution theorem in Fourier theory, point-wise update in the spectral domain globally affects all input features involved in Fourier transform, which sheds light on neural architectural design with non-local receptive field. Our proposed FFC is inspired to capsulate three different kinds of computations in a single operation unit: a local branch that conducts ordinary small-kernel convolution, a semi-global branch that processes spectrally stacked image patches, and a global branch that manipulates image-level spectrum. All branches complementarily address different scales. A multi-branch aggregation step is included in FFC for cross-scale fusion. FFC is a generic operator that can directly replace vanilla convolutions in a large body of existing networks, without any adjustments and with comparable complexity metrics (e.g., FLOPs). We experimentally evaluate FFC in three major vision benchmarks (ImageNet for image recognition, Kinetics for video action recognition, MSCOCO for human keypoint detection). It consistently elevates accuracies in all above tasks by significant margins.


#113
Simulating a Primary Visual Cortex at the Front of CNNs Improves Robustness to Image Perturbations

Joel Dapello · Tiago Marques · Martin Schrimpf · Franziska Geiger · David Cox · James J DiCarlo

Current state-of-the-art object recognition models are largely based on convolutional neural network (CNN) architectures, which are loosely inspired by the primate visual system. However, these CNNs can be fooled by imperceptibly small, explicitly crafted perturbations, and struggle to recognize objects in corrupted images that are easily recognized by humans. Here, by making comparisons with primate neural data, we first observed that CNN models with a neural hidden layer that better matches primate primary visual cortex (V1) are also more robust to adversarial attacks. Inspired by this observation, we developed VOneNets, a new class of hybrid CNN vision models. Each VOneNet contains a fixed weight neural network front-end that simulates primate V1, called the VOneBlock, followed by a neural network back-end adapted from current CNN vision models. The VOneBlock is based on a classical neuroscientific model of V1: the linear-nonlinear-Poisson model, consisting of a biologically-constrained Gabor filter bank, simple and complex cell nonlinearities, and a V1 neuronal stochasticity generator. After training, VOneNets retain high ImageNet performance, but each is substantially more robust, outperforming the base CNNs and state-of-the-art methods by 18% and 3%, respectively, on a conglomerate benchmark of perturbations comprised of white box adversarial attacks and common image corruptions. Finally, we show that all components of the VOneBlock work in synergy to improve robustness. While current CNN architectures are arguably brain-inspired, the results presented here demonstrate that more precisely mimicking just one stage of the primate visual system leads to new gains in ImageNet-level computer vision applications.


#114
The Devil is in the Detail: A Framework for Macroscopic Prediction via Microscopic Models

Yingxiang Yang · Negar Kiyavash · Le Song · Niao He

Macroscopic data aggregated from microscopic events are pervasive in machine learning, such as country-level COVID-19 infection statistics based on city-level data. Yet, many existing approaches for predicting macroscopic behavior only use aggregated data, leaving a large amount of fine-grained microscopic information unused. In this paper, we propose a principled optimization framework for macroscopic prediction by fitting microscopic models based on conditional stochastic optimization. The framework leverages both macroscopic and microscopic information, and adapts to individual microscopic models involved in the aggregation. In addition, we propose efficient learning algorithms with convergence guarantees. In our experiments, we show that the proposed learning framework clearly outperforms other plug-in supervised learning approaches in real-world applications, including the prediction of daily infections of COVID-19 and medicare claims.


#115
When and How to Lift the Lockdown? Global COVID-19 Scenario Analysis and Policy Assessment using Compartmental Gaussian Processes

Zhaozhi Qian · Ahmed Alaa · Mihaela van der Schaar

The coronavirus disease 2019 (COVID-19) global pandemic has led many countries to impose unprecedented lockdown measures in order to slow down the outbreak. Questions on whether governments have acted promptly enough, and whether lockdown measures can be lifted soon have since been central in public discourse. Data-driven models that predict COVID-19 fatalities under different lockdown policy scenarios are essential for addressing these questions, and for informing governments on future policy directions. To this end, this paper develops a Bayesian model for predicting the effects of COVID-19 containment policies in a global context — we treat each country as a distinct data point, and exploit variations of policies across countries to learn country-specific policy effects. Our model utilizes a two-layer Gaussian process (GP) prior — the lower layer uses a compartmental SEIR (Susceptible, Exposed, Infected, Recovered) model as a prior mean function with “country-and-policy-specific” parameters that capture fatality curves under different “counterfactual” policies within each country, whereas the upper layer is shared across all countries, and learns lower-layer SEIR parameters as a function of country features and policy indicators. Our model combines the solid mechanistic foundations of SEIR models (Bayesian priors) with the flexible data-driven modeling and gradient-based optimization routines of machine learning (Bayesian posteriors) — i.e., the entire model is trained end-to-end via stochastic variational inference. We compare the projections of our model with other models listed by the Center for Disease Control (CDC), and provide scenario analyses for various lockdown and reopening strategies highlighting their impact on COVID-19 fatalities.


#116
Reinforced Molecular Optimization with Neighborhood-Controlled Grammars

Chencheng Xu · Qiao Liu · Minlie Huang · Tao Jiang

A major challenge in the pharmaceutical industry is to design novel molecules with specific desired properties, especially when the property evaluation is costly. Here, we propose MNCE-RL, a graph convolutional policy network for molecular optimization with molecular neighborhood-controlled embedding grammars through reinforcement learning. We extend the original neighborhood-controlled embedding grammars to make them applicable to molecular graph generation and design an efficient algorithm to infer grammatical production rules from given molecules. The use of grammars guarantees the validity of the generated molecular structures. By transforming molecular graphs to parse trees with the inferred grammars, the molecular structure generation task is modeled as a Markov decision process where a policy gradient strategy is utilized. In a series of experiments, we demonstrate that our approach achieves state-of-the-art performance in a diverse range of molecular optimization tasks and exhibits significant superiority in optimizing molecular properties with a limited number of property evaluations.


#117
Multi-Task Temporal Shift Attention Networks for On-Device Contactless Vitals Measurement

Xin Liu · Josh Fromm · Shwetak Patel · Daniel McDuff

Telehealth and remote health monitoring have become increasingly important during the SARS-CoV-2 pandemic and it is widely expected that this will have a lasting impact on healthcare practices. These tools can help reduce the risk of exposing patients and medical staff to infection, make healthcare services more accessible, and allow providers to see more patients. However, objective measurement of vital signs is challenging without direct contact with a patient. We present a video-based and on-device optical cardiopulmonary vital sign measurement approach. It leverages a novel multi-task temporal shift convolutional attention network (MTTS-CAN) and enables real-time cardiovascular and respiratory measurements on mobile platforms. We evaluate our system on an Advanced RISC Machine (ARM) CPU and achieve state-of-the-art accuracy while running at over 150 frames per second which enables real-time applications. Systematic experimentation on large benchmark datasets reveals that our approach leads to substantial (20%-50%) reductions in error and generalizes well across datasets.


#118
MRI Banding Removal via Adversarial Training

Aaron Defazio · Tullie Murrell · Michael Recht

MR images reconstructed from sub-sampled Cartesian data using deep learning techniques show a characteristic banding (sometimes described as streaking), which is particularly strong in low signal-to-noise regions of the reconstructed image. In this work, we propose the use of an adversarial loss that penalizes banding structures without requiring any human annotation. Our technique greatly reduces the appearance of banding, without requiring any additional computation or post-processing at reconstruction time. We report the results of a blind comparison against a strong baseline by a group of expert evaluators (board-certified radiologists), where our approach is ranked superior at banding removal with no statistically significant loss of detail. A reference implementation of our method is available in the supplementary material.


#119
Learning to Select Best Forecast Tasks for Clinical Outcome Prediction

Yuan Xue · Nan Du · Anne Mottram · Martin Seneviratne · Andrew Dai

The paradigm of pretraining' from a set of relevant auxiliary tasks and thenfinetuning' on a target task has been successfully applied in many different domains. However, when the auxiliary tasks are abundant, with complex relationships to the target task, using domain knowledge or searching over all possible pretraining setups are inefficient strategies. To address this challenge, we propose a method to automatically select from a large set of auxiliary tasks which yield a representation most useful to the target task. In particular, we develop an efficient algorithm that uses automatic auxiliary task selection within a nested-loop meta-learning process. We have applied this algorithm to the task of clinical outcome predictions in electronic medical records, learning from a large number of self-supervised tasks related to forecasting patient trajectories. Experiments on a real clinical dataset demonstrate the superior predictive performance of our method compared to direct supervised learning, naive pretraining and multitask learning, in particular in low-data scenarios when the primary task has very few examples. With detailed ablation analysis, we further show that the selection rules are interpretable and able to generalize to unseen target tasks with new data.


#120
Interpretable Sequence Learning for Covid-19 Forecasting

Sercan Arik · Chun-Liang Li · Jinsung Yoon · Rajarishi Sinha · Arkady Epshteyn · Long Le · Vikas Menon · Shashank Singh · Leyou Zhang · Martin Nikoltchev · Yash Sonthalia · Hootan Nakhost · Elli Kanal · Tomas Pfister

We propose a novel approach that integrates machine learning into compartmental disease modeling (e.g., SEIR) to predict the progression of COVID-19. Our model is explainable by design as it explicitly shows how different compartments evolve and it uses interpretable encoders to incorporate covariates and improve performance. Explainability is valuable to ensure that the model's forecasts are credible to epidemiologists and to instill confidence in end-users such as policy makers and healthcare institutions. Our model can be applied at different geographic resolutions, and we demonstrate it for states and counties in the United States. We show that our model provides more accurate forecasts compared to the alternatives, and that it provides qualitatively meaningful explanatory insights.


#121
Adversarial Attacks on Deep Graph Matching

Zijie Zhang · Zeru Zhang · Yang Zhou · Yelong Shen · Ruoming Jin · Dejing Dou

Despite achieving remarkable performance, deep graph learning models, such as node classification and network embedding, suffer from harassment caused by small adversarial perturbations. However, the vulnerability analysis of graph matching under adversarial attacks has not been fully investigated yet. This paper proposes an adversarial attack model with two novel attack techniques to perturb the graph structure and degrade the quality of deep graph matching: (1) a kernel density estimation approach is utilized to estimate and maximize node densities to derive imperceptible perturbations, by pushing attacked nodes to dense regions in two graphs, such that they are indistinguishable from many neighbors; and (2) a meta learning-based projected gradient descent method is developed to well choose attack starting points and to improve the search performance for producing effective perturbations. We evaluate the effectiveness of the attack model on real datasets and validate that the attacks can be transferable to other graph learning models.


#122
Adversarial Sparse Transformer for Time Series Forecasting

Sifan Wu · Xi Xiao · Qianggang Ding · Peilin Zhao · Ying Wei · Junzhou Huang

Many approaches have been proposed for time series forecasting, in light of its significance in wide applications including business demand prediction. However, the existing methods suffer from two key limitations. Firstly, most point prediction models only predict an exact value of each time step without flexibility, which can hardly capture the stochasticity of data. Even probabilistic prediction using the likelihood estimation suffers these problems in the same way. Besides, most of them use the auto-regressive generative mode, where ground-truth is provided during training and replaced by the network’s own one-step ahead output during inference, causing the error accumulation in inference. Thus they may fail to forecast time series for long time horizon due to the error accumulation. To solve these issues, in this paper, we propose a new time series forecasting model -- Adversarial Sparse Transformer (AST), based on Generated Adversarial Networks (GANs). Specifically, AST adopts a Sparse Transformer as the generator to learn a sparse attention map for time series forecasting, and uses a discriminator to improve the prediction performance from sequence level. Extensive experiments on several real-world datasets show the effectiveness and efficiency of our method.


#123
Diversity can be Transferred: Output Diversification for White- and Black-box Attacks

Yusuke Tashiro · Yang Song · Stefano Ermon

Adversarial attacks often involve random perturbations of the inputs drawn from uniform or Gaussian distributions, e.g. to initialize optimization-based white-box attacks or generate update directions in black-box attacks. These simple perturbations, however, could be sub-optimal as they are agnostic to the model being attacked. To improve the efficiency of these attacks, we propose Output Diversified Sampling (ODS), a novel sampling strategy that attempts to maximize diversity in the target model's outputs among the generated samples. While ODS is a gradient-based strategy, the diversity offered by ODS is transferable and can be helpful for both white-box and black-box attacks via surrogate models. Empirically, we demonstrate that ODS significantly improves the performance of existing white-box and black-box attacks. In particular, ODS reduces the number of queries needed for state-of-the-art black-box attacks on ImageNet by a factor of two.


#124
Input-Aware Dynamic Backdoor Attack

Tuan Anh Nguyen · Anh Tran

In recent years, neural backdoor attack has been considered to be a potential security threat to deep learning systems. Such systems, while achieving the state-of-the-art performance on clean data, perform abnormally on inputs with predefined triggers. Current backdoor techniques, however, rely on uniform trigger patterns, which are easily detected and mitigated by current defense methods. In this work, we propose a novel backdoor attack technique in which the triggers vary from input to input. To achieve this goal, we implement an input-aware trigger generator driven by diversity loss. A novel cross-trigger test is applied to enforce trigger nonreusablity, making backdoor verification impossible. Experiments show that our method is efficient in various attack scenarios as well as multiple datasets. We further demonstrate that our backdoor can bypass the state of the art defense methods. An analysis with a famous neural network inspector again proves the stealthiness of the proposed attack. Our code is publicly available.


#125
Understanding Global Feature Contributions With Additive Importance Measures

Ian Covert · Scott Lundberg · Su-In Lee

Understanding the inner workings of complex machine learning models is a long-standing problem and most recent research has focused on local interpretability. To assess the role of individual input features in a global sense, we explore the perspective of defining feature importance through the predictive power associated with each feature. We introduce two notions of predictive power (model-based and universal) and formalize this approach with a framework of additive importance measures, which unifies numerous methods in the literature. We then propose SAGE, a model-agnostic method that quantifies predictive power while accounting for feature interactions. Our experiments show that SAGE can be calculated efficiently and that it assigns more accurate importance values than other methods.


#126
Improving Policy-Constrained Kidney Exchange via Pre-Screening

Duncan McElfresh · Michael Curry · Tuomas Sandholm · John Dickerson

In barter exchanges, participants swap goods with one another without exchanging money; these exchanges are often facilitated by a central clearinghouse, with the goal of maximizing the aggregate quality (or number) of swaps. Barter exchanges are subject to many forms of uncertainty--in participant preferences, the feasibility and quality of various swaps, and so on. Our work is motivated by kidney exchange, a real-world barter market in which patients in need of a kidney transplant swap their willing living donors, in order to find a better match. Modern exchanges include 2- and 3-way swaps, making the kidney exchange clearing problem NP-hard. Planned transplants often \emph{fail} for a variety of reasons--if the donor organ is rejected by the recipient's medical team, or if the donor and recipient are found to be medically incompatible. Due to 2- and 3-way swaps, failed transplants can ``cascade'' through an exchange; one US-based exchange estimated that about $85\%$ of planned transplants failed in 2019. Many optimization-based approaches have been designed to avoid these failures; however most exchanges cannot implement these methods, due to legal and policy constraints. Instead, we consider a setting where exchanges can \emph{query} the preferences of certain donors and recipients--asking whether they would accept a particular transplant. We characterize this as a two-stage decision problem, in which the exchange program (a) queries a small number of transplants before committing to a matching, and (b) constructs a matching according to fixed policy. We show that selecting these edges is a challenging combinatorial problem, which is non-monotonic and non-submodular, in addition to being NP-hard. We propose both a greedy heuristic and a Monte Carlo tree search, which outperforms previous approaches, using experiments on both synthetic data and real kidney exchange data from the United Network for Organ Sharing.


#127
Learning Black-Box Attackers with Transferable Priors and Query Feedback

Jiancheng YANG · Yangzhou Jiang · Xiaoyang Huang · Bingbing Ni · Chenglong Zhao

This paper addresses the challenging black-box adversarial attack problem, where only classification confidence of a victim model is available. Inspired by consistency of visual saliency between different vision models, a surrogate model is expected to improve the attack performance via transferability. By combining transferability-based and query-based black-box attack, we propose a surprisingly simple baseline approach (named SimBA++) using the surrogate model, which significantly outperforms several state-of-the-art methods. Moreover, to efficiently utilize the query feedback, we update the surrogate model in a novel learning scheme, named High-Order Gradient Approximation (HOGA). By constructing a high-order gradient computation graph, we update the surrogate model to approximate the victim model in both forward and backward pass. The SimBA++ and HOGA result in Learnable Black-Box Attack (LeBA), which surpasses previous state of the art by considerable margins: the proposed LeBA significantly reduces queries, while keeping higher attack success rates close to 100% in extensive ImageNet experiments, including attacking vision benchmarks and defensive models. Code is open source at https://github.com/TrustworthyDL/LeBA.


#128
De-Anonymizing Text by Fingerprinting Language Generation

Zhen Sun · Roei Schuster · Vitaly Shmatikov

Components of machine learning systems are not (yet) perceived as security hotspots. Secure coding practices, such as ensuring that no execution paths depend on confidential inputs, have not yet been adopted by ML developers. We initiate the study of code security of ML systems by investigating how nucleus sampling---a popular approach for generating text, used for applications such as auto-completion---unwittingly leaks texts typed by users. Our main result is that the series of nucleus sizes for many natural English word sequences is a unique fingerprint. We then show how an attacker can infer typed text by measuring these fingerprints via a suitable side channel (e.g., cache access times), explain how this attack could help de-anonymize anonymous texts, and discuss defenses.


#129
Beta Embeddings for Multi-Hop Logical Reasoning in Knowledge Graphs

Hongyu Ren · Jure Leskovec

One of the fundamental problems in Artificial Intelligence is to perform complex multi-hop logical reasoning over the facts captured by a knowledge graph (KG). This problem is challenging, because KGs can be massive and incomplete. Recent approaches embed KG entities in a low dimensional space and then use these embeddings to find the answer entities. However, it has been an outstanding challenge of how to handle arbitrary first-order logic (FOL) queries as present methods are limited to only a subset of FOL operators. In particular, the negation operator is not supported. An additional limitation of present methods is also that they cannot naturally model uncertainty. Here, we present BetaE, a probabilistic embedding framework for answering arbitrary FOL queries over KGs. BetaE is the first method that can handle a complete set of first-order logical operations: conjunction ($\wedge$), disjunction ($\vee$), and negation ($\neg$). A key insight of BetaE is to use probabilistic distributions with bounded support, specifically the Beta distribution, and embed queries/entities as distributions, which as a consequence allows us to also faithfully model uncertainty. Logical operations are performed in the embedding space by neural operators over the probabilistic embeddings. We demonstrate the performance of BetaE on answering arbitrary FOL queries on three large, incomplete KGs. While being more general, BetaE also increases relative performance by up to 25.4% over the current state-of-the-art KG reasoning methods that can only handle conjunctive queries without negation.


#130
Design Space for Graph Neural Networks

Jiaxuan You · Zhitao Ying · Jure Leskovec

The rapid evolution of Graph Neural Networks (GNNs) has led to a growing number of new architectures as well as novel applications. However, current research focuses on proposing and evaluating specific architectural designs of GNNs, such as GCN, GIN, or GAT, as opposed to studying the more general design space of GNNs that consists of a Cartesian product of different design dimensions, such as the number of layers or the type of the aggregation function. Additionally, GNN designs are often specialized to a single task, yet few efforts have been made to understand how to quickly find the best GNN design for a novel task or a novel dataset. Here we define and systematically study the architectural design space for GNNs which consists of 315,000 different designs over 32 different predictive tasks. Our approach features three key innovations: (1) A general GNN design space; (2) a GNN task space with a similarity metric, so that for a given novel task/dataset, we can quickly identify/transfer the best performing architecture; (3) an efficient and effective design space evaluation method which allows insights to be distilled from a huge number of model-task combinations. Our key results include: (1) A comprehensive set of guidelines for designing well-performing GNNs; (2) while best GNN designs for different tasks vary significantly, the GNN task space allows for transferring the best designs across different tasks; (3) models discovered using our design space achieve state-of-the-art performance. Overall, our work offers a principled and scalable approach to transition from studying individual GNN designs for specific tasks, to systematically studying the GNN design space and the task space. Finally, we release GraphGym, a powerful platform for exploring different GNN designs and tasks. GraphGym features modularized GNN implementation, standardized GNN evaluation, and reproducible and scalable experiment management.


#131
Learning Physical Graph Representations from Visual Scenes

Daniel Bear · Chaofei Fan · Damian Mrowca · Yunzhu Li · Seth Alter · Aran Nayebi · Jeremy Schwartz · Li Fei-Fei · Jiajun Wu · Josh Tenenbaum · Daniel Yamins

Convolutional Neural Networks (CNNs) have proved exceptional at learning representations for visual object categorization. However, CNNs do not explicitly encode objects, parts, and their physical properties, which has limited CNNs' success on tasks that require structured understanding of visual scenes. To overcome these limitations, we introduce the idea of ``Physical Scene Graphs'' (PSGs), which represent scenes as hierarchical graphs, with nodes in the hierarchy corresponding intuitively to object parts at different scales, and edges to physical connections between parts. Bound to each node is a vector of latent attributes that intuitively represent object properties such as surface shape and texture. We also describe PSGNet, a network architecture that learns to extract PSGs by reconstructing scenes through a PSG-structured bottleneck. PSGNet augments standard CNNs by including: recurrent feedback connections to combine low and high-level image information; graph pooling and vectorization operations that convert spatially-uniform feature maps into object-centric graph structures; and perceptual grouping principles to encourage the identification of meaningful scene elements. We show that PSGNet outperforms alternative self-supervised scene representation algorithms at scene segmentation tasks, especially on complex real-world images, and generalizes well to unseen object types and scene arrangements. PSGNet is also able learn from physical motion, enhancing scene estimates even for static images. We present a series of ablation studies illustrating the importance of each component of the PSGNet architecture, analyses showing that learned latent attributes capture intuitive scene properties, and illustrate the use of PSGs for compositional scene inference.


#132
Equivariant Networks for Hierarchical Structures

Renhao Wang · Marjan Albooyeh · Siamak Ravanbakhsh

While using invariant and equivariant maps, it is possible to apply deep learning to a range of primitive data structures, a formalism for dealing with hierarchy is lacking. This is a significant issue because many practical structures are hierarchies of simple building blocks; some examples include sequences of sets, graphs of graphs, or multiresolution images. Observing that the symmetry of a hierarchical structure is the ``wreath product'' of symmetries of the building blocks, we express the equivariant map for the hierarchy using an intuitive combination of the equivariant linear layers of the building blocks. More generally, we show that any equivariant map for the hierarchy has this form. To demonstrate the effectiveness of this approach to model design, we consider its application in the semantic segmentation of point-cloud data. By voxelizing the point cloud, we impose a hierarchy of translation and permutation symmetries on the data and report state-of-the-art on {semantic3d}, {s3dis}, and {vkitti}, that include some of the largest real-world point-cloud benchmarks.


#133
ARMA Nets: Expanding Receptive Field for Dense Prediction

Jiahao Su · Shiqi Wang · Furong Huang

Global information is essential for dense prediction problems, whose goal is to compute a discrete or continuous label for each pixel in the images. Traditional convolutional layers in neural networks, initially designed for image classification, are restrictive in these problems since the filter size limits their receptive fields. In this work, we propose to replace any traditional convolutional layer with an autoregressive moving-average (ARMA) layer, a novel module with an adjustable receptive field controlled by the learnable autoregressive coefficients. Compared with traditional convolutional layers, our ARMA layer enables explicit interconnections of the output neurons and learns its receptive field by adapting the autoregressive coefficients of the interconnections. ARMA layer is adjustable to different types of tasks: for tasks where global information is crucial, it is capable of learning relatively large autoregressive coefficients to allow for an output neuron's receptive field covering the entire input; for tasks where only local information is required, it can learn small or near zero autoregressive coefficients and automatically reduces to a traditional convolutional layer. We show both theoretically and empirically that the effective receptive field of networks with ARMA layers (named ARMA networks) expands with larger autoregressive coefficients. We also provably solve the instability problem of learning and prediction in the ARMA layer through a re-parameterization mechanism. Additionally, we demonstrate that ARMA networks substantially improve their baselines on challenging dense prediction tasks, including video prediction and semantic segmentation.


#134
Storage Efficient and Dynamic Flexible Runtime Channel Pruning via Deep Reinforcement Learning

Jianda Chen · Shangyu Chen · Sinno Jialin Pan

In this paper, we propose a deep reinforcement learning (DRL) based framework to efficiently perform runtime channel pruning on convolutional neural networks (CNNs). Our DRL-based framework aims to learn a pruning strategy to determine how many and which channels to be pruned in each convolutional layer, depending on each individual input instance at runtime. Unlike existing runtime pruning methods which require to store all channels parameters for inference, our framework can reduce parameters storage consumption by introducing a static pruning component. Comparison experimental results with existing runtime and static pruning methods on state-of-the-art CNNs demonstrate that our proposed framework is able to provide a tradeoff between dynamic flexibility and storage efficiency in runtime channel pruning.


#135
How to Characterize The Landscape of Overparameterized Convolutional Neural Networks

Yihong Gu · Weizhong Zhang · Cong Fang · Jason Lee · Tong Zhang

For many initialization schemes, parameters of two randomly initialized deep neural networks (DNNs) can be quite different, but feature distributions of the hidden nodes are similar at each layer. With the help of a new technique called {\it neural network grafting}, we demonstrate that even during the entire training process, feature distributions of differently initialized networks remain similar at each layer. In this paper, we present an explanation of this phenomenon. Specifically, we consider the loss landscape of an overparameterized convolutional neural network (CNN) in the continuous limit, where the numbers of channels/hidden nodes in the hidden layers go to infinity. Although the landscape of the overparameterized CNN is still non-convex with respect to the trainable parameters, we show that very surprisingly, it can be reformulated as a convex function with respect to the feature distributions in the hidden layers. Therefore by reparameterizing neural networks in terms of feature distributions, we obtain a much simpler characterization of the landscape of overparameterized CNNs. We further argue that training with respect to network parameters leads to a fixed trajectory in the feature distributions.


#136
Towards Learning Convolutions from Scratch

Behnam Neyshabur

Convolution is one of the most essential components of modern architectures used in computer vision. As machine learning moves towards reducing the expert bias and learning it from data, a natural next step seems to be learning convolution-like structures from scratch. This, however, has proven elusive. For example, current state-of-the-art architecture search algorithms use convolution as one of the existing modules rather than learning it from data. In an attempt to understand the inductive bias that gives rise to convolutions, we investigate minimum description length as a guiding principle and show that in some settings, it can indeed be indicative of the performance of architectures. To find architectures with small description length, we propose beta-LASSO, a simple variant of LASSO algorithm that, when applied on fully-connected networks for image classification tasks, learns architectures with local connections and achieves state-of-the-art accuracies for training fully-connected networks on CIFAR-10 (84.50%), CIFAR-100 (57.76%) and SVHN (93.84%) bridging the gap between fully-connected and convolutional networks.


#137
Bayesian Attention Modules

Xinjie Fan · Shujian Zhang · Bo Chen · Mingyuan Zhou

Attention modules, as simple and effective tools, have not only enabled deep neural networks to achieve state-of-the-art results in many domains, but also enhanced their interpretability. Most current models use deterministic attention modules due to their simplicity and ease of optimization. Stochastic counterparts, on the other hand, are less popular despite their potential benefits. The main reason is that stochastic attention often introduces optimization issues or requires significant model changes. In this paper, we propose a scalable stochastic version of attention that is easy to implement and optimize. We construct simplex-constrained attention distributions by normalizing reparameterizable distributions, making the training process differentiable. We learn their parameters in a Bayesian framework where a data-dependent prior is introduced for regularization. We apply the proposed stochastic attention modules to various attention-based models, with applications to graph node classification, visual question answering, image captioning, machine translation, and language understanding. Our experiments show the proposed method brings consistent improvements over the corresponding baselines.


#138
Kalman Filtering Attention for User Behavior Modeling in CTR Prediction

Hu Liu · Jing LU · Xiwei Zhao · Sulong Xu · Hao Peng · Yutong Liu · Zehua Zhang · Jian Li · Junsheng Jin · Yongjun Bao · Weipeng Yan

Click-through rate (CTR) prediction is one of the fundamental tasks for e-commerce search engines. As search becomes more personalized, it is necessary to capture the user interest from rich behavior data. Existing user behavior modeling algorithms develop different attention mechanisms to emphasize query-relevant behaviors and suppress irrelevant ones. Despite being extensively studied, these attentions still suffer from two limitations. First, conventional attentions mostly limit the attention field only to a single user's behaviors, which is not suitable in e-commerce where users often hunt for new demands that are irrelevant to any historical behaviors. Second, these attentions are usually biased towards frequent behaviors, which is unreasonable since high frequency does not necessarily indicate great importance. To tackle the two limitations, we propose a novel attention mechanism, termed Kalman Filtering Attention (KFAtt), that considers the weighted pooling in attention as a maximum a posteriori (MAP) estimation. By incorporating a priori, KFAtt resorts to global statistics when few user behaviors are relevant. Moreover, a frequency capping mechanism is incorporated to correct the bias towards frequent behaviors. Offline experiments on both benchmark and a 10 billion scale real production dataset, together with an Online A/B test, show that KFAtt outperforms all compared state-of-the-arts. KFAtt has been deployed in the ranking system of JD.com, one of the largest B2C e-commerce websites in China, serving the main traffic of hundreds of millions of active users.


#139
Understanding and Exploring the Network with Stochastic Architectures

Zhijie Deng · Yinpeng Dong · Shifeng Zhang · Jun Zhu

There is an emerging trend to train a network with stochastic architectures to enable various architectures to be plugged and played during inference. However, the existing investigation is highly entangled with neural architecture search (NAS), limiting its widespread use across scenarios. In this work, we decouple the training of a network with stochastic architectures (NSA) from NAS and provide a first systematical investigation on it as a stand-alone problem. We first uncover the characteristics of NSA in various aspects ranging from training stability, convergence, predictive behaviour, to generalization capacity to unseen architectures. We identify various issues of the vanilla NSA, such as training/test disparity and function mode collapse, and further propose the solutions to these issues with theoretical and empirical insights. We believe that these results could also serve as good heuristics for NAS. Given these understandings, we further apply the NSA with our improvements into diverse scenarios to fully exploit its promise of inference-time architecture stochasticity, including model ensemble, uncertainty estimation and semi-supervised learning. Remarkable performance (e.g., 2.75% error rate and 0.0032 expected calibration error on CIFAR-10) validate the effectiveness of such a model, providing new perspectives of exploring the potential of the network with stochastic architectures, beyond NAS.


#140
Neuron Merging: Compensating for Pruned Neurons

Woojeong Kim · Suhyun Kim · Mincheol Park · Geunseok Jeon

Network pruning is widely used to lighten and accelerate neural network models. Structured network pruning discards the whole neuron or filter, leading to accuracy loss. In this work, we propose a novel concept of neuron merging applicable to both fully connected layers and convolution layers, which compensates for the information loss due to the pruned neurons/filters. Neuron merging starts with decomposing the original weights into two matrices/tensors. One of them becomes the new weights for the current layer, and the other is what we name a scaling matrix, guiding the combination of neurons. If the activation function is ReLU, the scaling matrix can be absorbed into the next layer under certain conditions, compensating for the removed neurons. We also propose a data-free and inexpensive method to decompose the weights by utilizing the cosine similarity between neurons. Compared to the pruned model with the same topology, our merged model better preserves the output feature map of the original model; thus, it maintains the accuracy after pruning without fine-tuning. We demonstrate the effectiveness of our approach over network pruning for various model architectures and datasets. As an example, for VGG-16 on CIFAR-10, we achieve an accuracy of 93.16% while reducing 64% of total parameters, without any fine-tuning. The code can be found here: https://github.com/friendshipkim/neuron-merging


#141
Position-based Scaled Gradient for Model Quantization and Pruning

Jangho Kim · KiYoon Yoo · Nojun Kwak

We propose the position-based scaled gradient (PSG) that scales the gradient depending on the position of a weight vector to make it more compression-friendly. First, we theoretically show that applying PSG to the standard gradient descent (GD), which is called PSGD, is equivalent to the GD in the warped weight space, a space made by warping the original weight space via an appropriately designed invertible function. Second, we empirically show that PSG acting as a regularizer to a weight vector is favorable for model compression domains such as quantization and pruning. PSG reduces the gap between the weight distributions of a full-precision model and its compressed counterpart. This enables the versatile deployment of a model either as an uncompressed mode or as a compressed mode depending on the availability of resources. The experimental results on CIFAR-10/100 and ImageNet datasets show the effectiveness of the proposed PSG in both domains of pruning and quantization even for extremely low bits. The code is released in Github.


#142
ShiftAddNet: A Hardware-Inspired Deep Network

Haoran You · Xiaohan Chen · Yongan Zhang · Chaojian Li · Sicheng Li · Zihao Liu · Zhangyang Wang · Yingyan Lin

Multiplication (e.g., convolution) is arguably a cornerstone of modern deep neural networks (DNNs). However, intensive multiplications cause expensive resource costs that challenge DNNs' deployment on resource-constrained edge devices, driving several attempts for multiplication-less deep networks. This paper presented ShiftAddNet, whose main inspiration is drawn from a common practice in energy-efficient hardware implementation, that is, multiplication can be instead performed with additions and logical bit-shifts. We leverage this idea to explicitly parameterize deep networks in this way, yielding a new type of deep network that involves only bit-shift and additive weight layers. This hardware-inspired ShiftAddNet immediately leads to both energy-efficient inference and training, without compromising the expressive capacity compared to standard DNNs. The two complementary operation types (bit-shift and add) additionally enable finer-grained control of the model's learning capacity, leading to more flexible trade-off between accuracy and (training) efficiency, as well as improved robustness to quantization and pruning. We conduct extensive experiments and ablation studies, all backed up by our FPGA-based ShiftAddNet implementation and energy measurements. Compared to existing DNNs or other multiplication-less models, ShiftAddNet aggressively reduces over 80% hardware-quantified energy cost of DNNs training and inference, while offering comparable or better accuracies. Codes and pre-trained models are available at https://github.com/RICE-EIC/ShiftAddNet.


#143
Pruning neural networks without any data by iteratively conserving synaptic flow

Hidenori Tanaka · Daniel Kunin · Daniel Yamins · Surya Ganguli

Pruning the parameters of deep neural networks has generated intense interest due to potential savings in time, memory and energy both during training and at test time. Recent works have identified, through an expensive sequence of training and pruning cycles, the existence of winning lottery tickets or sparse trainable subnetworks at initialization. This raises a foundational question: can we identify highly sparse trainable subnetworks at initialization, without ever training, or indeed without ever looking at the data? We provide an affirmative answer to this question through theory driven algorithm design. We first mathematically formulate and experimentally verify a conservation law that explains why existing gradient-based pruning algorithms at initialization suffer from layer-collapse, the premature pruning of an entire layer rendering a network untrainable. This theory also elucidates how layer-collapse can be entirely avoided, motivating a novel pruning algorithm Iterative Synaptic Flow Pruning (SynFlow). This algorithm can be interpreted as preserving the total flow of synaptic strengths through the network at initialization subject to a sparsity constraint. Notably, this algorithm makes no reference to the training data and consistently competes with or outperforms existing state-of-the-art pruning algorithms at initialization over a range of models (VGG and ResNet), datasets (CIFAR-10/100 and Tiny ImageNet), and sparsity constraints (up to 99.99 percent). Thus our data-agnostic pruning algorithm challenges the existing paradigm that, at initialization, data must be used to quantify which synapses are important.


#144
Attribution Preservation in Network Compression for Reliable Network Interpretation

Geondo Park · June Yong Yang · Sung Ju Hwang · Eunho Yang

Neural networks embedded in safety-sensitive applications such as self-driving cars and wearable health monitors rely on two important techniques: input attribution for hindsight analysis and network compression to reduce its size for edge-computing. In this paper, we show that these seemingly unrelated techniques conflict with each other as network compression deforms the produced attributions, which could lead to dire consequences for mission-critical applications. This phenomenon arises due to the fact that conventional network compression methods only preserve the predictions of the network while ignoring the quality of the attributions. To combat the attribution inconsistency problem, we present a framework that can preserve the attributions while compressing a network. By employing the Weighted Collapsed Attribution Matching regularizer, we match the attribution maps of the network being compressed to its pre-compression former self. We demonstrate the effectiveness of our algorithm both quantitatively and qualitatively on diverse compression methods.


#145
Language as a Cognitive Tool to Imagine Goals in Curiosity Driven Exploration

Cédric Colas · Tristan Karch · Nicolas Lair · Jean-Michel Dussoux · Clément Moulin-Frier · Peter F Dominey · Pierre-Yves Oudeyer

Developmental machine learning studies how artificial agents can model the way children learn open-ended repertoires of skills. Such agents need to create and represent goals, select which ones to pursue and learn to achieve them. Recent approaches have considered goal spaces that were either fixed and hand-defined or learned using generative models of states. This limited agents to sample goals within the distribution of known effects. We argue that the ability to imagine out-of-distribution goals is key to enable creative discoveries and open-ended learning. Children do so by leveraging the compositionality of language as a tool to imagine descriptions of outcomes they never experienced before, targeting them as goals during play. We introduce IMAGINE, an intrinsically motivated deep reinforcement learning architecture that models this ability. Such imaginative agents, like children, benefit from the guidance of a social peer who provides language descriptions. To take advantage of goal imagination, agents must be able to leverage these descriptions to interpret their imagined out-of-distribution goals. This generalization is made possible by modularity: a decomposition between learned goal-achievement reward function and policy relying on deep sets, gated attention and object-centered representations. We introduce the Playground environment and study how this form of goal imagination improves generalization and exploration over agents lacking this capacity. In addition, we identify the properties of goal imagination that enable these results and study the impacts of modularity and social interactions.


#146
An Efficient Asynchronous Method for Integrating Evolutionary and Gradient-based Policy Search

Kyunghyun Lee · Byeong-Uk Lee · Ukcheol Shin · In So Kweon

Deep reinforcement learning (DRL) algorithms and evolution strategies (ES) have been applied to various tasks, showing excellent performances. These have the opposite properties, with DRL having good sample efficiency and poor stability, while ES being vice versa. Recently, there have been attempts to combine these algorithms, but these methods fully rely on synchronous update scheme, making it not ideal to maximize the benefits of the parallelism in ES. To solve this challenge, asynchronous update scheme was introduced, which is capable of good time-efficiency and diverse policy exploration. In this paper, we introduce an Asynchronous Evolution Strategy-Reinforcement Learning (AES-RL) that maximizes the parallel efficiency of ES and integrates it with policy gradient methods. Specifically, we propose 1) a novel framework to merge ES and DRL asynchronously and 2) various asynchronous update methods that can take all advantages of asynchronism, ES, and DRL, which are exploration and time efficiency, stability, and sample efficiency, respectively. The proposed framework and update methods are evaluated in continuous control benchmark work, showing superior performance as well as time efficiency compared to the previous methods.


#147
Model-based Reinforcement Learning for Semi-Markov Decision Processes with Neural ODEs

Jianzhun Du · Joseph Futoma · Finale Doshi-Velez

We present two elegant solutions for modeling continuous-time dynamics, in a novel model-based reinforcement learning (RL) framework for semi-Markov decision processes (SMDPs), using neural ordinary differential equations (ODEs). Our models accurately characterize continuous-time dynamics and enable us to develop high-performing policies using a small amount of data. We also develop a model-based approach for optimizing time schedules to reduce interaction rates with the environment while maintaining the near-optimal performance, which is not possible for model-free methods. We experimentally demonstrate the efficacy of our methods across various continuous-time domains.


#148
Refactoring Policy for Compositional Generalizability using Self-Supervised Object Proposals

Tongzhou Mu · Jiayuan Gu · Zhiwei Jia · Hao Tang · Hao Su

We study how to learn a policy with compositional generalizability. We propose a two-stage framework, which refactorizes a high-reward teacher policy into a generalizable student policy with strong inductive bias. Particularly, we implement an object-centric GNN-based student policy, whose input objects are learned from images through self-supervised learning. Empirically, we evaluate our approach on four difficult tasks that require compositional generalizability, and achieve superior performance compared to baselines.


#149
Cooperative Heterogeneous Deep Reinforcement Learning

Han Zheng · Pengfei Wei · Jing Jiang · Guodong Long · Qinghua Lu · Chengqi Zhang

Numerous deep reinforcement learning agents have been proposed, and each of them has its strengths and flaws. In this work, we present a Cooperative Heterogeneous Deep Reinforcement Learning (CHDRL) framework that can learn a policy by integrating the advantages of heterogeneous agents. Specifically, we propose a cooperative learning framework that classifies heterogeneous agents into two classes: global agents and local agents. Global agents are off-policy agents that can utilize experiences from the other agents. Local agents are either on-policy agents or population-based evolutionary algorithms (EAs) agents that can explore the local area effectively. We employ global agents, which are sample-efficient, to guide the learning of local agents so that local agents can benefit from the sample-efficient agents and simultaneously maintain their advantages, e.g., stability. Global agents also benefit from effective local searches. Experimental studies on a range of continuous control tasks from the Mujoco benchmark show that CHDRL achieves better performance compared with state-of-the-art baselines.


#150
The Mean-Squared Error of Double Q-Learning

Wentao Weng · Harsh Gupta · Niao He · Lei Ying · R. Srikant

In this paper, we establish a theoretical comparison between the asymptotic mean square errors of double Q-learning and Q-learning. Our result builds upon an analysis for linear stochastic approximation based on Lyapunov equations and applies to both tabular setting or with linear function approximation, provided that the optimal policy is unique and the algorithms converge. We show that the asymptotic mean-square error of Double Q-learning is exactly equal to that of Q-learning if Double Q-learning uses twice the learning rate of Q-learning and the output of Double Q-learning is the average of its two estimators. We also present some practical implications of this theoretical observation using simulations.


#151
Novelty Search in Representational Space for Sample Efficient Exploration

Ruo Yu Tao · Vincent Francois-Lavet · Joelle Pineau

We present a new approach for efficient exploration which leverages a low-dimensional encoding of the environment learned with a combination of model-based and model-free objectives. Our approach uses intrinsic rewards that are based on the distance of nearest neighbors in the low dimensional representational space to gauge novelty. We then leverage these intrinsic rewards for sample-efficient exploration with planning routines in representational space for hard exploration tasks with sparse rewards. One key element of our approach is the use of information theoretic principles to shape our representations in a way so that our novelty reward goes beyond pixel similarity. We test our approach on a number of maze tasks, as well as a control problem and show that our exploration approach is more sample-efficient compared to strong baselines.


#152
Learning Implicit Credit Assignment for Cooperative Multi-Agent Reinforcement Learning

Meng Zhou · Ken Liu · Pengwei Sui · Yixuan Li · Yuk Ying Chung

We present a multi-agent actor-critic method that aims to implicitly address the credit assignment problem under fully cooperative settings. Our key motivation is that credit assignment among agents may not require an explicit formulation as long as (1) the policy gradients derived from a centralized critic carry sufficient information for the decentralized agents to maximize their joint action value through optimal cooperation and (2) a sustained level of exploration is enforced throughout training. Under the centralized training with decentralized execution (CTDE) paradigm, we achieve the former by formulating the centralized critic as a hypernetwork such that a latent state representation is integrated into the policy gradients through its multiplicative association with the stochastic policies; to achieve the latter, we derive a simple technique called adaptive entropy regularization where magnitudes of the entropy gradients are dynamically rescaled based on the current policy stochasticity to encourage consistent levels of exploration. Our algorithm, referred to as LICA, is evaluated on several benchmarks including the multi-agent particle environments and a set of challenging StarCraft II micromanagement tasks, and we show that LICA significantly outperforms previous methods.


#153
Decentralized TD Tracking with Linear Function Approximation and its Finite-Time Analysis

Gang Wang · Songtao Lu · Georgios Giannakis · Gerald Tesauro · Jian Sun

The present contribution deals with decentralized policy evaluation in multi-agent Markov decision processes using temporal-difference (TD) methods with linear function approximation for scalability. The agents cooperate to estimate the value function of such a process by observing continual state transitions of a shared environment over the graph of interconnected nodes (agents), along with locally private rewards. Different from existing consensus-type TD algorithms, the approach here develops a simple decentralized TD tracker by wedding TD learning with gradient tracking techniques. The non-asymptotic properties of the novel TD tracker are established for both independent and identically distributed (i.i.d.) as well as Markovian transitions through a unifying multistep Lyapunov analysis. In contrast to the prior art, the novel algorithm forgoes the limiting error bounds on the number of agents, which endows it with performance comparable to that of centralized TD methods that are the sharpest known to date.


#154
Robust Multi-Agent Reinforcement Learning with Model Uncertainty

Kaiqing Zhang · TAO SUN · Yunzhe Tao · Sahika Genc · Sunil Mallya · Tamer Basar

In this work, we study the problem of multi-agent reinforcement learning (MARL) with model uncertainty, which is referred to as robust MARL. This is naturally motivated by some multi-agent applications where each agent may not have perfectly accurate knowledge of the model, e.g., all the reward functions of other agents. Little a priori work on MARL has accounted for such uncertainties, neither in problem formulation nor in algorithm design. In contrast, we model the problem as a robust Markov game, where the goal of all agents is to find policies such that no agent has the incentive to deviate, i.e., reach some equilibrium point, which is also robust to the possible uncertainty of the MARL model. We first introduce the solution concept of robust Nash equilibrium in our setting, and develop a Q-learning algorithm to find such equilibrium policies, with convergence guarantees under certain conditions. In order to handle possibly enormous state-action spaces in practice, we then derive the policy gradients for robust MARL, and develop an actor-critic algorithm with function approximation. Our experiments demonstrate that the proposed algorithm outperforms several baseline MARL methods that do not account for the model uncertainty, in several standard but uncertain cooperative and competitive MARL environments.


#155
Bayesian Multi-type Mean Field Multi-agent Imitation Learning

Fan Yang · Alina Vereshchaka · Changyou Chen · Wen Dong

Multi-agent Imitation learning (MAIL) refers to the problem that agents learn to perform a task interactively in a multi-agent system through observing and mimicking expert demonstrations, without any knowledge of a reward function from the environment. MAIL has received a lot of attention due to promising results achieved on synthesized tasks, with the potential to be applied to complex real-world multi-agent tasks. Key challenges for MAIL include sample efficiency and scalability. In this paper, we proposed Bayesian multi-type mean field multi-agent imitation learning (BM3IL). Our method improves sample efficiency through establishing a Bayesian formulation for MAIL, and enhances scalability through introducing a new multi-type mean field approximation. We demonstrate the performance of our algorithm through benchmarking with three state-of-the-art multi-agent imitation learning algorithms on several tasks, including solving a multi-agent traffic optimization problem in a real-world transportation network. Experimental results indicate that our algorithm significantly outperforms all other algorithms in all scenarios.


#156
Emergent Complexity and Zero-shot Transfer via Unsupervised Environment Design

Michael Dennis · Natasha Jaques · Eugene Vinitsky · Alexandre Bayen · Stuart Russell · Andrew Critch · Sergey Levine

A wide range of reinforcement learning (RL) problems --- including robustness, transfer learning, unsupervised RL, and emergent complexity --- require specifying a distribution of tasks or environments in which a policy will be trained. However, creating a useful distribution of environments is error prone, and takes a significant amount of developer time and effort. We propose Unsupervised Environment Design (UED) as an alternative paradigm, where developers provide environments with unknown parameters, and these parameters are used to automatically produce a distribution over valid, solvable environments. Existing approaches to automatically generating environments suffer from common failure modes: domain randomization cannot generate structure or adapt the difficulty of the environment to the agent's learning progress, and minimax adversarial training leads to worst-case environments that are often unsolvable. To generate structured, solvable environments for our protagonist agent, we introduce a second, antagonist agent that is allied with the environment-generating adversary. The adversary is motivated to generate environments which maximize regret, defined as the difference between the protagonist and antagonist agent's return. We call our technique Protagonist Antagonist Induced Regret Environment Design (PAIRED). Our experiments demonstrate that PAIRED produces a natural curriculum of increasingly complex environments, and PAIRED agents achieve higher zero-shot transfer performance when tested in highly novel environments.


#157
Inverse Rational Control with Partially Observable Continuous Nonlinear Dynamics

Minhae Kwon · Saurabh Daptardar · Paul R Schrater · Xaq Pitkow

A fundamental question in neuroscience is how the brain creates an internal model of the world to guide actions using sequences of ambiguous sensory information. This is naturally formulated as a reinforcement learning problem under partial observations, where an agent must estimate relevant latent variables in the world from its evidence, anticipate possible future states, and choose actions that optimize total expected reward. This problem can be solved by control theory, which allows us to find the optimal actions for a given system dynamics and objective function. However, animals often appear to behave suboptimally. Why? We hypothesize that animals have their own flawed internal model of the world, and choose actions with the highest expected subjective reward according to that flawed model. We describe this behavior as {\it rational} but not optimal. The problem of Inverse Rational Control (IRC) aims to identify which internal model would best explain an agent's actions. Our contribution here generalizes past work on Inverse Rational Control which solved this problem for discrete control in partially observable Markov decision processes. Here we accommodate continuous nonlinear dynamics and continuous actions, and impute sensory observations corrupted by unknown noise that is private to the animal. We first build an optimal Bayesian agent that learns an optimal policy generalized over the entire model space of dynamics and subjective rewards using deep reinforcement learning. Crucially, this allows us to compute a likelihood over models for experimentally observable action trajectories acquired from a suboptimal agent. We then find the model parameters that maximize the likelihood using gradient ascent. Our method successfully recovers the true model of rational agents. This approach provides a foundation for interpreting the behavioral and neural dynamics of animal brains during complex tasks.


#158
Safe Reinforcement Learning via Curriculum Induction

Matteo Turchetta · Andrey Kolobov · Shital Shah · Andreas Krause · Alekh Agarwal

In safety-critical applications, autonomous agents may need to learn in an environment where mistakes can be very costly. In such settings, the agent needs to behave safely not only after but also while learning. To achieve this, existing safe reinforcement learning methods make an agent rely on priors that let it avoid dangerous situations during exploration with high probability, but both the probabilistic guarantees and the smoothness assumptions inherent in the priors are not viable in many scenarios of interest such as autonomous driving. This paper presents an alternative approach inspired by human teaching, where an agent learns under the supervision of an automatic instructor that saves the agent from violating constraints during learning. In this model, we introduce the monitor that neither needs to know how to do well at the task the agent is learning nor needs to know how the environment works. Instead, it has a library of reset controllers that it activates when the agent starts behaving dangerously, preventing it from doing damage. Crucially, the choices of which reset controller to apply in which situation affect the speed of agent learning. Based on observing agents' progress the teacher itself learns a policy for choosing the reset controllers, a curriculum, to optimize the agent's final policy reward. Our experiments use this framework in two environments to induce curricula for safe and efficient learning.


#159
On the Stability and Convergence of Robust Adversarial Reinforcement Learning: A Case Study on Linear Quadratic Systems

Kaiqing Zhang · Bin Hu · Tamer Basar

Reinforcement learning (RL) algorithms can fail to generalize due to the gap between the simulation and the real world. One standard remedy is to use robust adversarial RL (RARL) that accounts for this gap during the policy training, by modeling the gap as an adversary against the training agent. In this work, we reexamine the effectiveness of RARL under a fundamental robust control setting: the linear quadratic (LQ) case. We first observe that the popular RARL scheme that greedily alternates agents’ updates can easily destabilize the system. Motivated by this, we propose several other policy-based RARL algorithms whose convergence behaviors are then studied both empirically and theoretically. We find: i) the conventional RARL framework (Pinto et al., 2017) can learn a destabilizing policy if the initial policy does not enjoy the robust stability property against the adversary; and ii) with robustly stabilizing initializations, our proposed double-loop RARL algorithm provably converges to the global optimal cost while maintaining robust stability on-the-fly. We also examine the stability and convergence issues of other variants of policy-based RARL algorithms, and then discuss several ways to learn robustly stabilizing initializations. From a robust control perspective, we aim to provide some new and critical angles about RARL, by identifying and addressing the stability issues in this fundamental LQ setting in continuous control. Our results make an initial attempt toward better theoretical understandings of policy-based RARL, the core approach in Pinto et al., 2017.


#160
Sample Complexity of Asynchronous Q-Learning: Sharper Analysis and Variance Reduction

Gen Li · Yuting Wei · Yuejie Chi · Yuantao Gu · Yuxin Chen

Asynchronous Q-learning aims to learn the optimal action-value function (or Q-function) of a Markov decision process (MDP), based on a single trajectory of Markovian samples induced by a behavior policy. Focusing on a $\gamma$-discounted MDP with state space S and action space A, we demonstrate that the $ \ell_{\infty} $-based sample complexity of classical asynchronous Q-learning --- namely, the number of samples needed to yield an entrywise $\epsilon$-accurate estimate of the Q-function --- is at most on the order of $ \frac{1}{ \mu_{\min}(1-\gamma)^5 \epsilon^2 }+ \frac{ t_{\mathsf{mix}} }{ \mu_{\min}(1-\gamma) } $ up to some logarithmic factor, provided that a proper constant learning rate is adopted. Here, $ t_{\mathsf{mix}} $ and $ \mu_{\min} $ denote respectively the mixing time and the minimum state-action occupancy probability of the sample trajectory. The first term of this bound matches the complexity in the case with independent samples drawn from the stationary distribution of the trajectory. The second term reflects the expense taken for the empirical distribution of the Markovian trajectory to reach a steady state, which is incurred at the very beginning and becomes amortized as the algorithm runs. Encouragingly, the above bound improves upon the state-of-the-art result by a factor of at least |S||A|. Further, the scaling on the discount complexity can be improved by means of variance reduction.


#161
Off-Policy Evaluation via the Regularized Lagrangian

Mengjiao (Sherry) Yang · Ofir Nachum · Bo Dai · Lihong Li · Dale Schuurmans

The recently proposed distribution correction estimation (DICE) family of estimators has advanced the state of the art in off-policy evaluation from behavior-agnostic data. While these estimators all perform some form of stationary distribution correction, they arise from different derivations and objective functions. In this paper, we unify these estimators as regularized Lagrangians of the same linear program. The unification allows us to expand the space of DICE estimators to new alternatives that demonstrate improved performance. More importantly, by analyzing the expanded space of estimators both mathematically and empirically we find that dual solutions offer greater flexibility in navigating the tradeoff between optimization stability and estimation bias, and generally provide superior estimates in practice.


#162
Dynamic Regret of Policy Optimization in Non-Stationary Environments

Yingjie Fei · Zhuoran Yang · Zhaoran Wang · Qiaomin Xie

We consider reinforcement learning (RL) in episodic MDPs with adversarial full-information reward feedback and unknown fixed transition kernels. We propose two model-free policy optimization algorithms, POWER and POWER++, and establish guarantees for their dynamic regret. Compared with the classical notion of static regret, dynamic regret is a stronger notion as it explicitly accounts for the non-stationarity of environments. The dynamic regret attained by the proposed algorithms interpolates between different regimes of non-stationarity, and moreover satisfies a notion of adaptive (near-)optimality, in the sense that it matches the (near-)optimal static regret under slow-changing environments. The dynamic regret bound features two components, one arising from exploration, which deals with the uncertainty of transition kernels, and the other arising from adaptation, which deals with non-stationary environments. Specifically, we show that POWER++ improves over POWER on the second component of the dynamic regret by actively adapting to non-stationarity through prediction. To the best of our knowledge, our work is the first dynamic regret analysis of model-free RL algorithms in non-stationary environments.


#163
Constrained episodic reinforcement learning in concave-convex and knapsack settings

Kianté Brantley · Miro Dudik · Thodoris Lykouris · Sobhan Miryoosefi · Max Simchowitz · Aleksandrs Slivkins · Wen Sun

We propose an algorithm for tabular episodic reinforcement learning with constraints. We provide a modular analysis with strong theoretical guarantees for settings with concave rewards and convex constraints, and for settings with hard constraints (knapsacks). Most of the previous work in constrained reinforcement learning is limited to linear constraints, and the remaining work focuses on either the feasibility question or settings with a single episode. Our experiments demonstrate that the proposed algorithm significantly outperforms these approaches in existing constrained episodic environments.


#164
Off-Policy Interval Estimation with Lipschitz Value Iteration

Ziyang Tang · Yihao Feng · Na Zhang · Jian Peng · Qiang Liu

Off-policy evaluation provides an essential tool for evaluating the effects of different policies or treatments using only observed data. When applied to high-stakes scenarios such as medical diagnosis or financial decision-making, it is essential to provide provably correct upper and lower bounds of the expected reward, not just a classical single point estimate, to the end-users, as executing a poor policy can be very costly. In this work, we propose a provably correct method for obtaining interval bounds for off-policy evaluation in a general continuous setting. The idea is to search for the maximum and minimum values of the expected reward among all the Lipschitz Q-functions that are consistent with the observations, which amounts to solving a constrained optimization problem on a Lipschitz function space. We go on to introduce a Lipschitz value iteration method to monotonically tighten the interval, which is simple yet efficient and provably convergent. We demonstrate the practical efficiency of our method on a range of benchmarks.


#165
CoinDICE: Off-Policy Confidence Interval Estimation

Bo Dai · Ofir Nachum · Yinlam Chow · Lihong Li · Csaba Szepesvari · Dale Schuurmans

We study high-confidence behavior-agnostic off-policy evaluation in reinforcement learning, where the goal is to estimate a confidence interval on a target policy's value, given only access to a static experience dataset collected by unknown behavior policies. Starting from a function space embedding of the linear program formulation of the Q-function, we obtain an optimization problem with generalized estimating equation constraints. By applying the generalized empirical likelihood method to the resulting Lagrangian, we propose CoinDICE, a novel and efficient algorithm for computing confidence intervals. Theoretically, we prove the obtained confidence intervals are valid, in both asymptotic and finite-sample regimes. Empirically, we show in a variety of benchmarks that the confidence interval estimates are tighter and more accurate than existing methods.


#166
Risk-Sensitive Reinforcement Learning: Near-Optimal Risk-Sample Tradeoff in Regret

Yingjie Fei · Zhuoran Yang · Yudong Chen · Zhaoran Wang · Qiaomin Xie

We study risk-sensitive reinforcement learning in episodic Markov decision processes with unknown transition kernels, where the goal is to optimize the total reward under the risk measure of exponential utility. We propose two provably efficient model-free algorithms, Risk-Sensitive Value Iteration (RSVI) and Risk-Sensitive Q-learning (RSQ). These algorithms implement a form of risk-sensitive optimism in the face of uncertainty, which adapts to both risk-seeking and risk-averse modes of exploration. We prove that RSVI attains an \ensuremath{\tilde{O}\big(\lambda(|\beta| H^2) \cdot \sqrt{H^{3} S^{2}AT} \big)}$ regret, while RSQ attains an $\ensuremath{\tilde{O}\big(\lambda(|\beta| H^2) \cdot \sqrt{H^{4} SAT} \big)}$ regret, where $\lambda(u) = (e^{3u}-1)/u$ for $u>0$. In the above, $\beta$ is the risk parameter of the exponential utility function, $S$ the number of states, $A$ the number of actions, $T$ the total number of timesteps, and $H$ the episode length. On the flip side, we establish a regret lower bound showing that the exponential dependence on $|\beta|$ and $H$ is unavoidable for any algorithm with an $\tilde{O}(\sqrt{T})$ regret (even when the risk objective is on the same scale as the original reward), thus certifying the near-optimality of the proposed algorithms. Our results demonstrate that incorporating risk awareness into reinforcement learning necessitates an exponential cost in $|\beta|$ and $H$, which quantifies the fundamental tradeoff between risk sensitivity (related to aleatoric uncertainty) and sample efficiency (related to epistemic uncertainty). To the best of our knowledge, this is the first regret analysis of risk-sensitive reinforcement learning with the exponential utility.


#167
Reinforcement Learning with General Value Function Approximation: Provably Efficient Approach via Bounded Eluder Dimension

Ruosong Wang · Russ Salakhutdinov · Lin Yang

Value function approximation has demonstrated phenomenal empirical success in reinforcement learning (RL). Nevertheless, despite a handful of recent progress on developing theory for RL with linear function approximation, the understanding of \emph{general} function approximation schemes largely remains missing. In this paper, we establish the first provably efficient RL algorithm with general value function approximation. We show that if the value functions admit an approximation with a function class $\mathcal{F}$, our algorithm achieves a regret bound of $\widetilde{O}(\mathrm{poly}(dH)\sqrt{T})$ where $d$ is a complexity measure of $\mathcal{F}$ that depends on the eluder dimension~[Russo and Van Roy, 2013] and log-covering numbers, $H$ is the planning horizon, and $T$ is the number interactions with the environment. Our theory generalizes the linear MDP assumption to general function classes. Moreover, our algorithm is model-free and provides a framework to justify the effectiveness of algorithms used in practice.


#168
Task-agnostic Exploration in Reinforcement Learning

Xuezhou Zhang · Yuzhe Ma · Adish Singla

Efficient exploration is one of the main challenges in reinforcement learning (RL). Most existing sample-efficient algorithms assume the existence of a single reward function during exploration. In many practical scenarios, however, there is not a single underlying reward function to guide the exploration, for instance, when an agent needs to learn many skills simultaneously, or multiple conflicting objectives need to be balanced. To address these challenges, we propose the \textit{task-agnostic RL} framework: In the exploration phase, the agent first collects trajectories by exploring the MDP without the guidance of a reward function. After exploration, it aims at finding near-optimal policies for $N$ tasks, given the collected trajectories augmented with \textit{sampled rewards} for each task. We present an efficient task-agnostic RL algorithm, \textsc{UCBZero}, that finds $\epsilon$-optimal policies for $N$ arbitrary tasks after at most $\tilde O(\log(N)H^5SA/\epsilon^2)$ exploration episodes. We also provide an $\Omega(\log (N)H^2SA/\epsilon^2)$ lower bound, showing that the $\log$ dependency on $N$ is unavoidable. Furthermore, we provide an $N$-independent sample complexity bound of \textsc{UCBZero} in the statistically easier setting when the ground truth reward functions are known.


#169
Provably Efficient Exploration for Reinforcement Learning Using Unsupervised Learning

Fei Feng · Ruosong Wang · Wotao Yin · Simon Du · Lin Yang

Motivated by the prevailing paradigm of using unsupervised learning for efficient exploration in reinforcement learning (RL) problems [tang2017exploration,bellemare2016unifying], we investigate when this paradigm is provably efficient. We study episodic Markov decision processes with rich observations generated from a small number of latent states. We present a general algorithmic framework that is built upon two components: an unsupervised learning algorithm and a no-regret tabular RL algorithm. Theoretically, we prove that as long as the unsupervised learning algorithm enjoys a polynomial sample complexity guarantee, we can find a near-optimal policy with sample complexity polynomial in the number of latent states, which is significantly smaller than the number of observations. Empirically, we instantiate our framework on a class of hard exploration problems to demonstrate the practicality of our theory.


#170
On Function Approximation in Reinforcement Learning: Optimism in the Face of Large State Spaces

Zhuoran Yang · Chi Jin · Zhaoran Wang · Mengdi Wang · Michael Jordan

The classical theory of reinforcement learning (RL) has focused on tabular and linear representations of value functions. Further progress hinges on combining RL with modern function approximators such as kernel functions and deep neural networks, and indeed there have been many empirical successes that have exploited such combinations in large-scale applications. There are profound challenges, however, in developing a theory to support this enterprise, most notably the need to take into consideration the exploration-exploitation tradeoff at the core of RL in conjunction with the computational and statistical tradeoffs that arise in modern function-approximation-based learning systems. We approach these challenges by studying an optimistic modification of the least-squares value iteration algorithm, in the context of the action-value function represented by a kernel function or an overparameterized neural network. We establish both polynomial runtime complexity and polynomial sample complexity for this algorithm, without additional assumptions on the data-generating model. In particular, we prove that the algorithm incurs an $\tilde{\mathcal{O}}(\delta_{\cF} H^2 \sqrt{T})$ regret, where $\delta_{\cF}$ characterizes the intrinsic complexity of the function class $\cF$, $H$ is the length of each episode, and $T$ is the total number of episodes. Our regret bounds are independent of the number of states, a result which exhibits clearly the benefit of function approximation in RL.


#171
Upper Confidence Primal-Dual Reinforcement Learning for CMDP with Adversarial Loss

Shuang Qiu · Xiaohan Wei · Zhuoran Yang · Jieping Ye · Zhaoran Wang

We consider online learning for episodic stochastically constrained Markov decision processes (CMDP), which plays a central role in ensuring the safety of reinforcement learning. Here the loss function can vary arbitrarily across the episodes, and both the loss received and the budget consumption are revealed at the end of each episode. Previous works solve this problem under the restrictive assumption that the transition model of the MDP is known a priori and establish regret bounds that depend polynomially on the cardinalities of the state space $\mathcal{S}$ and the action space $\mathcal{A}$. In this work, we propose a new \emph{upper confidence primal-dual} algorithm, which only requires the trajectories sampled from the transition model. In particular, we prove that the proposed algorithm achieves $\widetilde{\mathcal{O}}(L|\mathcal{S}|\sqrt{|\mathcal{A}|T})$ upper bounds of both the regret and the constraint violation, where $L$ is the length of each episode. Our analysis incorporates a new high-probability drift analysis of Lagrange multiplier processes into the celebrated regret analysis of upper confidence reinforcement learning, which demonstrates the power of ``optimism in the face of uncertainty'' in constrained online learning.


#172
Minimax Value Interval for Off-Policy Evaluation and Policy Optimization

Nan Jiang · Jiawei Huang

We study minimax methods for off-policy evaluation (OPE) using value functions and marginalized importance weights. Despite that they hold promises of overcoming the exponential variance in traditional importance sampling, several key problems remain: (1) They require function approximation and are generally biased. For the sake of trustworthy OPE, is there anyway to quantify the biases? (2) They are split into two styles (“weight-learning” vs “value-learning”). Can we unify them? In this paper we answer both questions positively. By slightly altering the derivation of previous methods (one from each style), we unify them into a single value interval that comes with a special type of double robustness: when either the value-function or the importance-weight class is well specified, the interval is valid and its length quantifies the misspecification of the other class. Our interval also provides a unified view of and new insights to some recent methods, and we further explore the implications of our results on exploration and exploitation in off-policy policy optimization with insufficient data coverage.


#173
Logarithmic Regret Bound in Partially Observable Linear Dynamical Systems

Sahin Lale · Kamyar Azizzadenesheli · Babak Hassibi · Anima Anandkumar

We study the problem of system identification and adaptive control in partially observable linear dynamical systems. Adaptive and closed-loop system identification is a challenging problem due to correlations introduced in data collection. In this paper, we present the first model estimation method with finite-time guarantees in both open and closed-loop system identification. Deploying this estimation method, we propose adaptive control online learning (AdapOn), an efficient reinforcement learning algorithm that adaptively learns the system dynamics and continuously updates its controller through online learning steps. AdapOn estimates the model dynamics by occasionally solving a linear regression problem through interactions with the environment. Using policy re-parameterization and the estimated model, AdapOn constructs counterfactual loss functions to be used for updating the controller through online gradient descent. Over time, AdapOn improves its model estimates and obtains more accurate gradient updates to improve the controller. We show that AdapOn achieves a regret upper bound of $\text{polylog}\left(T\right)$, after $T$ time steps of agent-environment interaction. To the best of our knowledge, AdapOn is the first algorithm that achieves $\text{polylog}\left(T\right)$ regret in adaptive control of \textit{unknown} partially observable linear dynamical systems which includes linear quadratic Gaussian (LQG) control.


#174
The Power of Predictions in Online Control

Chenkai Yu · Guanya Shi · Soon-Jo Chung · Yisong Yue · Adam Wierman

We study the impact of predictions in online Linear Quadratic Regulator control with both stochastic and adversarial disturbances in the dynamics. In both settings, we characterize the optimal policy and derive tight bounds on the minimum cost and dynamic regret. Perhaps surprisingly, our analysis shows that the conventional greedy MPC approach is a near-optimal policy in both stochastic and adversarial settings. Specifically, for length-$T$ problems, MPC requires only $O(\log T)$ predictions to reach $O(1)$ dynamic regret, which matches (up to lower-order terms) our lower bound on the required prediction horizon for constant regret.


#570
Information Theoretic Regret Bounds for Online Nonlinear Control

Sham Kakade · Akshay Krishnamurthy · Kendall Lowrey · Motoya Ohnishi · Wen Sun

This work studies the problem of sequential control in an unknown, nonlinear dynamical system, where we model the underlying system dynamics as an unknown function in a known Reproducing Kernel Hilbert Space. This framework yields a general setting that permits discrete and continuous control inputs as well as non-smooth, non-differentiable dynamics. Our main result, the Lower Confidence-based Continuous Control (LC3) algorithm, enjoys a near-optimal $O(\sqrt{T})$ regret bound against the optimal controller in episodic settings, where $T$ is the number of episodes. The bound has no explicit dependence on dimension of the system dynamics, which could be infinite, but instead only depends on information theoretic quantities. We empirically show its application to a number of nonlinear control tasks and demonstrate the benefit of exploration for learning model dynamics.