Minimax Optimal Nonparametric Estimation of Heterogeneous Treatment Effects
Zijun Gao, Yanjun Han
Spotlight presentation: Orals & Spotlights Track 02: COVID/Health/Bio Applications
on 2020-12-07T20:00:00-08:00 - 2020-12-07T20:10:00-08:00
on 2020-12-07T20:00:00-08:00 - 2020-12-07T20:10:00-08:00
Poster Session 1 (more posters)
on 2020-12-07T21:00:00-08:00 - 2020-12-07T23:00:00-08:00
GatherTown: Learning theory and sparsity ( Town E0 - Spot A2 )
on 2020-12-07T21:00:00-08:00 - 2020-12-07T23:00:00-08:00
GatherTown: Learning theory and sparsity ( Town E0 - Spot A2 )
Join GatherTown
Only iff poster is crowded, join Zoom . Authors have to start the Zoom call from their Profile page / Presentation History.
Only iff poster is crowded, join Zoom . Authors have to start the Zoom call from their Profile page / Presentation History.
Toggle Abstract Paper (in Proceedings / .pdf)
Abstract: A central goal of causal inference is to detect and estimate the treatment effects of a given treatment or intervention on an outcome variable of interest, where a member known as the heterogeneous treatment effect (HTE) is of growing popularity in recent practical applications such as the personalized medicine. In this paper, we model the HTE as a smooth nonparametric difference between two less smooth baseline functions, and determine the tight statistical limits of the nonparametric HTE estimation as a function of the covariate geometry. In particular, a two-stage nearest-neighbor-based estimator throwing away observations with poor matching quality is near minimax optimal. We also establish the tight dependence on the density ratio without the usual assumption that the covariate densities are bounded away from zero, where a key step is to employ a novel maximal inequality which could be of independent interest.