A Continuous-Time Mirror Descent Approach to Sparse Phase Retrieval
Fan Wu, Patrick Rebeschini
Spotlight presentation: Orals & Spotlights Track 32: Optimization
on 2020-12-10T20:00:00-08:00 - 2020-12-10T20:10:00-08:00
on 2020-12-10T20:00:00-08:00 - 2020-12-10T20:10:00-08:00
Poster Session 7 (more posters)
on 2020-12-10T21:00:00-08:00 - 2020-12-10T23:00:00-08:00
GatherTown: Optimization ( Town A2 - Spot C3 )
on 2020-12-10T21:00:00-08:00 - 2020-12-10T23:00:00-08:00
GatherTown: Optimization ( Town A2 - Spot C3 )
Join GatherTown
Only iff poster is crowded, join Zoom . Authors have to start the Zoom call from their Profile page / Presentation History.
Only iff poster is crowded, join Zoom . Authors have to start the Zoom call from their Profile page / Presentation History.
Toggle Abstract Paper (in Proceedings / .pdf)
Abstract: We analyze continuous-time mirror descent applied to sparse phase retrieval, which is the problem of recovering sparse signals from a set of magnitude-only measurements. We apply mirror descent to the unconstrained empirical risk minimization problem (batch setting), using the square loss and square measurements. We provide a full convergence analysis of the algorithm in this non-convex setting and prove that, with the hypentropy mirror map, mirror descent recovers any $k$-sparse vector $\mathbf{x}^\star\in\mathbb{R}^n$ with minimum (in modulus) non-zero entry on the order of $\| \mathbf{x}^\star \|_2/\sqrt{k}$ from $k^2$ Gaussian measurements, modulo logarithmic terms. This yields a simple algorithm which, unlike most existing approaches to sparse phase retrieval, adapts to the sparsity level, without including thresholding steps or adding regularization terms. Our results also provide a principled theoretical understanding for Hadamard Wirtinger flow [54], as Euclidean gradient descent applied to the empirical risk problem with Hadamard parametrization can be recovered as a first-order approximation to mirror descent in discrete time.