Towards Minimax Optimal Reinforcement Learning in Factored Markov Decision Processes
Yi Tian, Jian Qian, Suvrit Sra
Spotlight presentation: Orals & Spotlights Track 09: Reinforcement Learning
on 2020-12-08T07:30:00-08:00 - 2020-12-08T07:40:00-08:00
on 2020-12-08T07:30:00-08:00 - 2020-12-08T07:40:00-08:00
Poster Session 2 (more posters)
on 2020-12-08T09:00:00-08:00 - 2020-12-08T11:00:00-08:00
GatherTown: Reinforcement learning and planning ( Town D2 - Spot B2 )
on 2020-12-08T09:00:00-08:00 - 2020-12-08T11:00:00-08:00
GatherTown: Reinforcement learning and planning ( Town D2 - Spot B2 )
Join GatherTown
Only iff poster is crowded, join Zoom . Authors have to start the Zoom call from their Profile page / Presentation History.
Only iff poster is crowded, join Zoom . Authors have to start the Zoom call from their Profile page / Presentation History.
Toggle Abstract Paper (in Proceedings / .pdf)
Abstract: We study minimax optimal reinforcement learning in episodic factored Markov decision processes (FMDPs), which are MDPs with conditionally independent transition components. Assuming the factorization is known, we propose two model-based algorithms. The first one achieves minimax optimal regret guarantees for a rich class of factored structures, while the second one enjoys better computational complexity with a slightly worse regret. A key new ingredient of our algorithms is the design of a bonus term to guide exploration. We complement our algorithms by presenting several structure dependent lower bounds on regret for FMDPs that reveal the difficulty hiding in the intricacy of the structures.