Learning Optimal Representations with the Decodable Information Bottleneck
Yann Dubois, Douwe Kiela, David Schwab, Ramakrishna Vedantam
Spotlight presentation: Orals & Spotlights Track 05: Clustering/Ranking
on 2020-12-08T07:20:00-08:00 - 2020-12-08T07:30:00-08:00
on 2020-12-08T07:20:00-08:00 - 2020-12-08T07:30:00-08:00
Poster Session 2 (more posters)
on 2020-12-08T09:00:00-08:00 - 2020-12-08T11:00:00-08:00
GatherTown: Algorithms, applications, and theory ( Town E3 - Spot C1 )
on 2020-12-08T09:00:00-08:00 - 2020-12-08T11:00:00-08:00
GatherTown: Algorithms, applications, and theory ( Town E3 - Spot C1 )
Join GatherTown
Only iff poster is crowded, join Zoom . Authors have to start the Zoom call from their Profile page / Presentation History.
Only iff poster is crowded, join Zoom . Authors have to start the Zoom call from their Profile page / Presentation History.
Toggle Abstract Paper (in Proceedings / .pdf)
Abstract: We address the question of characterizing and finding optimal representations for supervised learning. Traditionally, this question has been tackled using the Information Bottleneck, which compresses the inputs while retaining information about the targets, in a decoder-agnostic fashion. In machine learning, however, our goal is not compression but rather generalization, which is intimately linked to the predictive family or decoder of interest (e.g. linear classifier). We propose the Decodable Information Bottleneck (DIB) that considers information retention and compression from the perspective of the desired predictive family. As a result, DIB gives rise to representations that are optimal in terms of expected test performance and can be estimated with guarantees. Empirically, we show that the framework can be used to enforce a small generalization gap on downstream classifiers and to predict the generalization ability of neural networks.